Learn R Programming

intubate (version 1.0.0)

klaR: Interfaces for klaR package for data science pipelines.

Description

Interfaces to klaR functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_classscatter(data, ...) ntbt_cond.index(data, ...) ntbt_greedy.wilks(data, ...) ntbt_loclda(data, ...) ntbt_meclight(data, ...) ntbt_NaiveBayes(data, ...) ntbt_nm(data, ...) ntbt_partimat(data, ...) ntbt_plineplot(data, ...) ntbt_pvs(data, ...) ntbt_rda(data, ...) ntbt_sknn(data, ...) ntbt_stepclass(data, ...) ntbt_woe(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(klaR)
# 
# ## ntbt_classscatter: Classification scatterplot matrix
# data(B3)
# library(MASS)
# 
# ## Original function to interface
# classscatter(PHASEN ~ BSP91JW + EWAJW + LSTKJW, data = B3, method = "lda")
# 
# ## The interface puts data as first parameter
# ntbt_classscatter(B3, PHASEN ~ BSP91JW + EWAJW + LSTKJW, method = "lda")
# 
# ## so it can be used easily in a pipeline.
# B3 %>%
#   ntbt_classscatter(PHASEN ~ BSP91JW + EWAJW + LSTKJW, method = "lda")
# 
# 
# ## ntbt_cond.index: Calculation of Condition Indices for Linear Regression
# data(Boston)
# 
# ## Original function to interface
# cond.index(medv ~ ., data = Boston)
# 
# ## The interface puts data as first parameter
# ntbt_cond.index(Boston, medv ~ .)
# 
# ## so it can be used easily in a pipeline.
# Boston %>%
#   ntbt_cond.index(medv ~ .)
# 
# 
# ## ntbt_greedy.wilks: Stepwise forward variable selection for classification
# data(B3)
# 
# ## Original function to interface
# greedy.wilks(PHASEN ~ ., data = B3, niveau = 0.1)
# 
# ## The interface puts data as first parameter
# ntbt_greedy.wilks(B3, PHASEN ~ ., niveau = 0.1)
# 
# ## so it can be used easily in a pipeline.
# B3 %>%
#   ntbt_greedy.wilks(PHASEN ~ ., niveau = 0.1)
# 
# ## ntbt_loclda: Localized Linear Discriminant Analysis (LocLDA)
# ## Original function to interface
# loclda(PHASEN ~ ., data = B3)
# 
# ## The interface puts data as first parameter
# ntbt_loclda(B3, PHASEN ~ .)
# 
# ## so it can be used easily in a pipeline.
# B3 %>%
#   ntbt_loclda(PHASEN ~ .)
# 
# 
# ## ntbt_meclight: Minimal Error Classification
# data(iris)
# 
# ## Original function to interface
# meclight(Species ~ ., data = iris)
# 
# ## The interface puts data as first parameter
# ntbt_meclight(iris, Species ~ .)
# 
# ## so it can be used easily in a pipeline.
# iris %>%
#   ntbt_meclight(Species ~ .)
# 
# 
# ## ntbt_NaiveBayes: Naive Bayes Classifier
# data(iris)
# 
# ## Original function to interface
# NaiveBayes(Species ~ ., data = iris)
# 
# ## The interface puts data as first parameter
# ntbt_NaiveBayes(iris, Species ~ .)
# 
# ## so it can be used easily in a pipeline.
# iris %>%
#   ntbt_NaiveBayes(Species ~ .)
# 
# 
# ## ntbt_nm: Nearest Mean Classification
# ## Original function to interface
# nm(PHASEN ~ ., data = B3)
# 
# ## The interface puts data as first parameter
# ntbt_nm(B3, PHASEN ~ .)
# 
# ## so it can be used easily in a pipeline.
# B3 %>%
#   ntbt_nm(PHASEN ~ .)
# 
# 
# ## ntbt_partimat: Plotting the 2-d partitions of classification methods
# ## Original function to interface
# partimat(Species ~ ., data = iris, method = "lda")
# 
# ## The interface puts data as first parameter
# ntbt_partimat(iris, Species ~ ., method = "lda")
# 
# ## so it can be used easily in a pipeline.
# iris %>%
#   ntbt_partimat(Species ~ ., method = "lda")
# 
# 
# ## ntbt_plineplot: Plotting marginal posterior class probabilities
# ## Original function to interface
# plineplot(PHASEN ~ ., data = B3, method = "lda", x = "EWAJW", xlab = "EWAJW")
# 
# ## The interface puts data as first parameter
# ntbt_plineplot(B3, PHASEN ~ ., method = "lda", x = "EWAJW", xlab = "EWAJW")
# 
# ## so it can be used easily in a pipeline.
# B3 %>%
#   ntbt_plineplot(PHASEN ~ ., method = "lda", x = "EWAJW", xlab = "EWAJW")
# 
# 
# ## ntbt_pvs: Pairwise variable selection for classification
# library("mlbench")
# data("Satellite")
# 
# ## Original function to interface
# pvs(classes ~ ., Satellite[1:3218,], method="qda", vs.method="ks.test")
# 
# ## The interface puts data as first parameter
# ntbt_pvs(Satellite[1:3218,], classes ~ ., method="qda", vs.method="ks.test")
# 
# ## so it can be used easily in a pipeline.
# Satellite[1:3218,] %>%
#   ntbt_pvs(classes ~ ., method="qda", vs.method="ks.test")
# 
# 
# ## ntbt_rda: Regularized Discriminant Analysis (RDA)
# ## Original function to interface
# rda(Species ~ ., data = iris, gamma = 0.05, lambda = 0.2)
# 
# ## The interface puts data as first parameter
# ntbt_rda(iris, Species ~ ., gamma = 0.05, lambda = 0.2)
# 
# ## so it can be used easily in a pipeline.
# iris %>%
#   ntbt_rda(Species ~ ., gamma = 0.05, lambda = 0.2)
# 
# 
# ## ntbt_sknn: Simple k nearest Neighbours
# ## Original function to interface
# sknn(Species ~ ., data = iris)
# 
# ## The interface puts data as first parameter
# ntbt_sknn(iris, Species ~ .)
# 
# ## so it can be used easily in a pipeline.
# iris %>%
#   ntbt_sknn(Species ~ .)
# 
# 
# ## ntbt_stepclass: Stepwise variable selection for classification
# ## Original function to interface
# stepclass(Species ~ ., data = iris, method = "qda", 
#           start.vars = "Sepal.Width", criterion = "AS")  # same as above 
# 
# ## The interface puts data as first parameter
# ntbt_stepclass(iris, Species ~ ., method = "qda", 
#                start.vars = "Sepal.Width", criterion = "AS")  # same as above 
# 
# ## so it can be used easily in a pipeline.
# iris %>%
#   ntbt_stepclass(Species ~ ., method = "qda", 
#                  start.vars = "Sepal.Width", criterion = "AS")  # same as above 
# 
# 
# ## ntbt_woe: Weights of evidence
# data("GermanCredit")
# set.seed(6)
# train <- sample(nrow(GermanCredit), round(0.6*nrow(GermanCredit)))
# 
# ## Original function to interface
# woe(credit_risk ~ ., data = GermanCredit[train,], zeroadj = 0.5, applyontrain = TRUE)
# 
# ## The interface puts data as first parameter
# ntbt_woe(GermanCredit[train,], credit_risk ~ ., zeroadj = 0.5, applyontrain = TRUE)
# 
# ## so it can be used easily in a pipeline.
# GermanCredit[train,] %>%
#   ntbt_woe(credit_risk ~ ., zeroadj = 0.5, applyontrain = TRUE)
# ## End(Not run)

Run the code above in your browser using DataLab