## Not run:
# library(intubate)
# library(magrittr)
# library(klaR)
#
# ## ntbt_classscatter: Classification scatterplot matrix
# data(B3)
# library(MASS)
#
# ## Original function to interface
# classscatter(PHASEN ~ BSP91JW + EWAJW + LSTKJW, data = B3, method = "lda")
#
# ## The interface puts data as first parameter
# ntbt_classscatter(B3, PHASEN ~ BSP91JW + EWAJW + LSTKJW, method = "lda")
#
# ## so it can be used easily in a pipeline.
# B3 %>%
# ntbt_classscatter(PHASEN ~ BSP91JW + EWAJW + LSTKJW, method = "lda")
#
#
# ## ntbt_cond.index: Calculation of Condition Indices for Linear Regression
# data(Boston)
#
# ## Original function to interface
# cond.index(medv ~ ., data = Boston)
#
# ## The interface puts data as first parameter
# ntbt_cond.index(Boston, medv ~ .)
#
# ## so it can be used easily in a pipeline.
# Boston %>%
# ntbt_cond.index(medv ~ .)
#
#
# ## ntbt_greedy.wilks: Stepwise forward variable selection for classification
# data(B3)
#
# ## Original function to interface
# greedy.wilks(PHASEN ~ ., data = B3, niveau = 0.1)
#
# ## The interface puts data as first parameter
# ntbt_greedy.wilks(B3, PHASEN ~ ., niveau = 0.1)
#
# ## so it can be used easily in a pipeline.
# B3 %>%
# ntbt_greedy.wilks(PHASEN ~ ., niveau = 0.1)
#
# ## ntbt_loclda: Localized Linear Discriminant Analysis (LocLDA)
# ## Original function to interface
# loclda(PHASEN ~ ., data = B3)
#
# ## The interface puts data as first parameter
# ntbt_loclda(B3, PHASEN ~ .)
#
# ## so it can be used easily in a pipeline.
# B3 %>%
# ntbt_loclda(PHASEN ~ .)
#
#
# ## ntbt_meclight: Minimal Error Classification
# data(iris)
#
# ## Original function to interface
# meclight(Species ~ ., data = iris)
#
# ## The interface puts data as first parameter
# ntbt_meclight(iris, Species ~ .)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_meclight(Species ~ .)
#
#
# ## ntbt_NaiveBayes: Naive Bayes Classifier
# data(iris)
#
# ## Original function to interface
# NaiveBayes(Species ~ ., data = iris)
#
# ## The interface puts data as first parameter
# ntbt_NaiveBayes(iris, Species ~ .)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_NaiveBayes(Species ~ .)
#
#
# ## ntbt_nm: Nearest Mean Classification
# ## Original function to interface
# nm(PHASEN ~ ., data = B3)
#
# ## The interface puts data as first parameter
# ntbt_nm(B3, PHASEN ~ .)
#
# ## so it can be used easily in a pipeline.
# B3 %>%
# ntbt_nm(PHASEN ~ .)
#
#
# ## ntbt_partimat: Plotting the 2-d partitions of classification methods
# ## Original function to interface
# partimat(Species ~ ., data = iris, method = "lda")
#
# ## The interface puts data as first parameter
# ntbt_partimat(iris, Species ~ ., method = "lda")
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_partimat(Species ~ ., method = "lda")
#
#
# ## ntbt_plineplot: Plotting marginal posterior class probabilities
# ## Original function to interface
# plineplot(PHASEN ~ ., data = B3, method = "lda", x = "EWAJW", xlab = "EWAJW")
#
# ## The interface puts data as first parameter
# ntbt_plineplot(B3, PHASEN ~ ., method = "lda", x = "EWAJW", xlab = "EWAJW")
#
# ## so it can be used easily in a pipeline.
# B3 %>%
# ntbt_plineplot(PHASEN ~ ., method = "lda", x = "EWAJW", xlab = "EWAJW")
#
#
# ## ntbt_pvs: Pairwise variable selection for classification
# library("mlbench")
# data("Satellite")
#
# ## Original function to interface
# pvs(classes ~ ., Satellite[1:3218,], method="qda", vs.method="ks.test")
#
# ## The interface puts data as first parameter
# ntbt_pvs(Satellite[1:3218,], classes ~ ., method="qda", vs.method="ks.test")
#
# ## so it can be used easily in a pipeline.
# Satellite[1:3218,] %>%
# ntbt_pvs(classes ~ ., method="qda", vs.method="ks.test")
#
#
# ## ntbt_rda: Regularized Discriminant Analysis (RDA)
# ## Original function to interface
# rda(Species ~ ., data = iris, gamma = 0.05, lambda = 0.2)
#
# ## The interface puts data as first parameter
# ntbt_rda(iris, Species ~ ., gamma = 0.05, lambda = 0.2)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_rda(Species ~ ., gamma = 0.05, lambda = 0.2)
#
#
# ## ntbt_sknn: Simple k nearest Neighbours
# ## Original function to interface
# sknn(Species ~ ., data = iris)
#
# ## The interface puts data as first parameter
# ntbt_sknn(iris, Species ~ .)
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_sknn(Species ~ .)
#
#
# ## ntbt_stepclass: Stepwise variable selection for classification
# ## Original function to interface
# stepclass(Species ~ ., data = iris, method = "qda",
# start.vars = "Sepal.Width", criterion = "AS") # same as above
#
# ## The interface puts data as first parameter
# ntbt_stepclass(iris, Species ~ ., method = "qda",
# start.vars = "Sepal.Width", criterion = "AS") # same as above
#
# ## so it can be used easily in a pipeline.
# iris %>%
# ntbt_stepclass(Species ~ ., method = "qda",
# start.vars = "Sepal.Width", criterion = "AS") # same as above
#
#
# ## ntbt_woe: Weights of evidence
# data("GermanCredit")
# set.seed(6)
# train <- sample(nrow(GermanCredit), round(0.6*nrow(GermanCredit)))
#
# ## Original function to interface
# woe(credit_risk ~ ., data = GermanCredit[train,], zeroadj = 0.5, applyontrain = TRUE)
#
# ## The interface puts data as first parameter
# ntbt_woe(GermanCredit[train,], credit_risk ~ ., zeroadj = 0.5, applyontrain = TRUE)
#
# ## so it can be used easily in a pipeline.
# GermanCredit[train,] %>%
# ntbt_woe(credit_risk ~ ., zeroadj = 0.5, applyontrain = TRUE)
# ## End(Not run)
Run the code above in your browser using DataLab