Learn R Programming

intubate (version 1.0.0)

latticeExtra: Interfaces for latticeExtra package for data science pipelines.

Description

Interfaces to latticeExtra functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_ecdfplot(data, ...) ntbt_mapplot(data, ...) ntbt_rootogram(data, ...) ntbt_segplot(data, ...) ntbt_tileplot(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(latticeExtra)
# 
# 
# ## ntbt_ecdfplot: Trellis Displays of Empirical CDF
# data(singer, package = "lattice")
# 
# ## Original function to interface
# ecdfplot(~height | voice.part, data = singer)
# 
# ## The interface puts data as first parameter
# ntbt_ecdfplot(singer, ~height | voice.part)
# 
# ## so it can be used easily in a pipeline.
# singer %>%
#   ntbt_ecdfplot(~height | voice.part)
# 
# 
# ## ntbt_mapplot: Trellis displays on Maps a.k.a. Choropleth maps
# library(maps)
# library(mapproj)
# data(USCancerRates)
# 
# ## Original function to interface
# ## Note: Alaska, Hawaii and others are not included in county map;
# ## this generates warnings with both USCancerRates and ancestry.
# suppressWarnings(print(
#   
#   mapplot(rownames(USCancerRates) ~ log(rate.male) + log(rate.female),
#           data = USCancerRates,
#           map = map("county", plot = FALSE, fill = TRUE,
#                     projection = "mercator"))
#   
# ))
# 
# ## The interface puts data as first parameter
# suppressWarnings(print(
#   
#   ntbt_mapplot(USCancerRates, rownames(USCancerRates) ~ log(rate.male) + log(rate.female),
#                map = map("county", plot = FALSE, fill = TRUE,
#                          projection = "mercator"))
# 
#   ))
# 
# ## so it can be used easily in a pipeline.
# suppressWarnings(print(
#   
#   USCancerRates %>%
#   ntbt_mapplot(rownames(USCancerRates) ~ log(rate.male) + log(rate.female),
#                map = map("county", plot = FALSE, fill = TRUE,
#                          projection = "mercator"))
# 
#   ))
# 
# 
# ## ntbt_rootogram: Trellis Displays of Tukey's Hanging Rootograms
# library(lattice)
# dta <- data.frame(x = rpois(1000, lambda = 50))
# 
# ## Original function to interface
# rootogram(~x, data = dta, dfun = function(x) dpois(x, lambda = 50))
# 
# ## The interface puts data as first parameter
# ntbt_rootogram(dta, ~x, dfun = function(x) dpois(x, lambda = 50))
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_rootogram(~x, dfun = function(x) dpois(x, lambda = 50))
# 
# 
# ## ntbt_segplot: Plot segments using the Trellis framework
# data(USCancerRates)
# 
# ## Original function to interface
# segplot(reorder(factor(county), rate.male) ~ LCL95.male + UCL95.male,
#         data = subset(USCancerRates, state == "Washington"))
# 
# ## The interface puts data as first parameter
# ntbt_segplot(subset(USCancerRates, state == "Washington"),
#              reorder(factor(county), rate.male) ~ LCL95.male + UCL95.male)
# 
# ## so it can be used easily in a pipeline.
# subset(USCancerRates, state == "Washington") %>%
#   ntbt_segplot(reorder(factor(county), rate.male) ~ LCL95.male + UCL95.male)
# 
# USCancerRates %>%
#   subset(state == "Washington") %>%
#   ntbt_segplot(reorder(factor(county), rate.male) ~ LCL95.male + UCL95.male)
# 
# 
# ## ntbt_tileplot: Plot a spatial mosaic from irregular 2D points
# tmp <- state.center
# tmp$Income <- state.x77[,"Income"]
# library(deldir)
# 
# ## Original function to interface
# tileplot(Income ~ x * y, tmp, border = "black",
#          panel = function(x, y, ...) {
#            panel.voronoi(x, y, ..., points = FALSE)
#            panel.text(x, y, state.abb, cex = 0.6)
#          })
# 
# ## The interface puts data as first parameter
# ntbt_tileplot(tmp, Income ~ x * y, border = "black",
#               panel = function(x, y, ...) {
#                 panel.voronoi(x, y, ..., points = FALSE)
#                 panel.text(x, y, state.abb, cex = 0.6)
#               })
# 
# ## so it can be used easily in a pipeline.
# tmp %>%
#   ntbt_tileplot(Income ~ x * y, border = "black",
#                 panel = function(x, y, ...) {
#                   panel.voronoi(x, y, ..., points = FALSE)
#                   panel.text(x, y, state.abb, cex = 0.6)
#                 })
# ## End(Not run)

Run the code above in your browser using DataLab