## Not run:
# library(intubate)
# library(magrittr)
# library(nnet)
#
# ## multinom
# options(contrasts = c("contr.treatment", "contr.poly"))
# library(MASS)
# example(birthwt)
#
# ## Original function to interface
# multinom(low ~ ., bwt)
#
# ## The interface reverses the order of data and formula
# ntbt_multinom(bwt, low ~ .)
#
# ## so it can be used easily in a pipeline.
# bwt %>%
# ntbt_multinom(low ~ .)
#
# ## nnet
# ir <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
# targets <- class.ind( c(rep("s", 50), rep("c", 50), rep("v", 50)))
# set.seed(6789) ## for reproducible results
# samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
# ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
# species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))
#
# ## Original function to interface
# set.seed(12345) ## for reproducible results
# nnet(species ~ ., data = ird, subset = samp,
# size = 2, rang = 0.1, decay = 5e-4, maxit = 200)
#
# ## The interface reverses the order of data and formula
# set.seed(12345) ## for reproducible results
# ntbt_nnet(data = ird, species ~ ., subset = samp,
# size = 2, rang = 0.1, decay = 5e-4, maxit = 200)
#
# ## so it can be used easily in a pipeline.
# set.seed(12345) ## for reproducible results
# ird %>%
# ntbt_nnet(species ~ ., subset = samp,
# size = 2, rang = 0.1, decay = 5e-4, maxit = 200)
# ## End(Not run)
Run the code above in your browser using DataLab