## Not run:
# library(intubate)
# library(magrittr)
# library(party)
#
# ## ntbt_cforest: Random Forest
#
# ### honest (i.e., out-of-bag) cross-classification of
# ### true vs. predicted classes
# data("mammoexp", package = "TH.data")
# #table(mammoexp$ME, predict(cforest(ME ~ ., data = mammoexp,
# # control = cforest_unbiased(ntree = 50)),
# # OOB = TRUE))
#
# ## Original function to interface
# set.seed(290875)
# cforest(ME ~ ., data = mammoexp, control = cforest_unbiased(ntree = 50))
#
# ## The interface puts data as first parameter
# set.seed(290875)
# ntbt_cforest(mammoexp, ME ~ ., control = cforest_unbiased(ntree = 50))
#
# ## so it can be used easily in a pipeline.
# set.seed(290875)
# mammoexp %>%
# ntbt_cforest(ME ~ ., control = cforest_unbiased(ntree = 50))
#
# ## ntbt_ctree: Conditional Inference Trees
# airq <- subset(airquality, !is.na(Ozone))
#
# ## Original function to interface
# set.seed(290875)
# ctree(Ozone ~ ., data = airq, controls = ctree_control(maxsurrogate = 3))
#
# ## The interface puts data as first parameter
# set.seed(290875)
# ntbt_ctree(airq, Ozone ~ ., controls = ctree_control(maxsurrogate = 3))
#
# ## so it can be used easily in a pipeline.
# set.seed(290875)
# airq %>%
# ntbt_ctree(Ozone ~ ., controls = ctree_control(maxsurrogate = 3))
#
#
# ## ntbt_mob: Model-based Recursive Partitioning
# data("BostonHousing", package = "mlbench")
# ## and transform variables appropriately (for a linear regression)
# BostonHousing$lstat <- log(BostonHousing$lstat)
# BostonHousing$rm <- BostonHousing$rm^2
# ## as well as partitioning variables (for fluctuation testing)
# BostonHousing$chas <- factor(BostonHousing$chas, levels = 0:1,
# labels = c("no", "yes"))
# BostonHousing$rad <- factor(BostonHousing$rad, ordered = TRUE)
#
# ## Original function to interface
# set.seed(290875)
# mob(medv ~ lstat + rm | zn + indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
# control = mob_control(minsplit = 40), data = BostonHousing,
# model = linearModel)
#
# ## The interface puts data as first parameter
# set.seed(290875)
# ntbt_mob(BostonHousing,
# medv ~ lstat + rm | zn + indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
# control = mob_control(minsplit = 40), model = linearModel)
#
# ## so it can be used easily in a pipeline.
# set.seed(290875)
# BostonHousing %>%
# ntbt_mob(medv ~ lstat + rm | zn + indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
# control = mob_control(minsplit = 40), model = linearModel)
# ## End(Not run)
Run the code above in your browser using DataLab