Learn R Programming

intubate (version 1.0.0)

quantreg: Interfaces for quantreg package for data science pipelines.

Description

Interfaces to quantreg functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_dynrq(data, ...) ntbt_KhmaladzeTest(data, ...) ntbt_nlrq(data, ...) ntbt_rq(data, ...) ntbt_rqProcess(data, ...) ntbt_rqss(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# library(quantreg)
# 
# 
# ## ntbt_dynrq: Dynamic Linear Quantile Regression
# require(zoo)
# data("UKDriverDeaths", package = "datasets")
# dta <- data.frame(uk = log10(UKDriverDeaths))
# 
# ## Original function to interface
# dynrq(uk ~ L(uk, 1) + L(uk, 12), data = dta)
# 
# ## The interface puts data as first parameter
# ntbt_dynrq(dta, uk ~ L(uk, 1) + L(uk, 12))
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_dynrq(uk ~ L(uk, 1) + L(uk, 12))
# 
# 
# ## ntbt_KhmaladzeTest: Tests of Location and Location Scale Shift Hypotheses for Linear Models
# data(barro)
# ## Original function to interface
# KhmaladzeTest(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, 
#               data = barro, taus = seq(.05,.95,by = .01))
# 
# ## The interface puts data as first parameter
# ntbt_KhmaladzeTest(barro, y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, 
#                    taus = seq(.05,.95,by = .01))
# 
# ## so it can be used easily in a pipeline.
# barro %>%
#   ntbt_KhmaladzeTest(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, 
#                      taus = seq(.05,.95,by = .01))
# 
# 
# ## ntbt_nlrq: Function to compute nonlinear quantile regression estimates
# Dat <- NULL; Dat$x <- rep(1:25, 20)
# set.seed(1)
# Dat$y <- SSlogis(Dat$x, 10, 12, 2)*rnorm(500, 1, 0.1)
# 
# ## Original function to interface
# nlrq(y ~ SSlogis(x, Asym, mid, scal), data = Dat, tau = 0.5, trace = TRUE)
# 
# ## The interface puts data as first parameter
# ntbt_nlrq(Dat, y ~ SSlogis(x, Asym, mid, scal), tau = 0.5, trace = TRUE)
# 
# ## so it can be used easily in a pipeline.
# Dat %>%
#   ntbt_nlrq(y ~ SSlogis(x, Asym, mid, scal), tau = 0.5, trace = TRUE)
# 
# 
# ## ntbt_rq: Quantile Regression
# data(stackloss)
# dta <- data.frame(stack.loss, stack.x)
# 
# ## Original function to interface
# rq(stack.loss ~ stack.x, .5, data = dta)  # median (l1) regression  fit for the stackloss data. 
# 
# ## The interface puts data as first parameter
# ntbt_rq(dta, stack.loss ~ stack.x, .5)
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_rq(stack.loss ~ stack.x, .5)
# 
# 
# ## ntbt_rqProcess: Compute Standardized Quantile Regression Process
# ## Original function to interface
# data(barro)
# rqProcess(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, 
#           data = barro, taus = seq(.05,.95,by = .01))
# 
# ## The interface puts data as first parameter
# ntbt_rqProcess(barro, y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, 
#                taus = seq(.05,.95,by = .01))
# 
# ## so it can be used easily in a pipeline.
# barro %>%
#   ntbt_rqProcess(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, 
#                  taus = seq(.05,.95,by = .01))
# 
# 
# ## ntbt_rqss: Additive Quantile Regression Smoothing
# n <- 200
# x <- sort(rchisq(n,4))
# z <- x + rnorm(n)
# y <- log(x)+ .1*(log(x))^2 + log(x)*rnorm(n)/4 + z
# dta <- data.frame(x, y, z)
# 
# ## Original function to interface
# rqss(y ~ qss(x, constraint= "N") + z, data = dta)
# 
# ## The interface puts data as first parameter
# ntbt_rqss(dta, y ~ qss(x, constraint= "N") + z)
# 
# ## so it can be used easily in a pipeline.
# dta %>%
#   ntbt_rqss(y ~ qss(x, constraint= "N") + z)
# ## End(Not run)

Run the code above in your browser using DataLab