## Not run:
# library(intubate)
# library(magrittr)
# library(rminer)
#
# ## ntbt_fit: Fit a supervised data mining model (classification or regression) model
# x1 <- rnorm(200,100,20)
# x2 <- rnorm(200,100,20)
# y <- 0.7*sin(x1/(25*pi))+0.3*sin(x2/(25*pi))
# dta <- data.frame(x1, x2, y)
#
# ## Original function to interface
# fit(y ~ x1 + x2, data = dta, model = "mlpe")
#
# ## The interface puts data as first parameter
# ntbt_fit(dta, y ~ x1 + x2, model = "mlpe")
#
# ## so it can be used easily in a pipeline.
# dta %>%
# ntbt_fit(y ~ x1 + x2, model = "mlpe")
#
#
# ## ntbt_mining: Powerful function that trains and tests a particular fit model
# ## under several runs and a given validation method
# ## Original function to interface
# mining(y ~ x1 + x2, data = dta, model = "mlpe")
#
# ## The interface puts data as first parameter
# ntbt_mining(dta, y ~ x1 + x2, model = "mlpe")
#
# ## so it can be used easily in a pipeline.
# dta %>%
# ntbt_mining(y ~ x1 + x2, model = "mlpe")
# ## End(Not run)
Run the code above in your browser using DataLab