## Not run:
# library(intubate)
# library(magrittr)
# library(robustbase)
#
#
# ## ntbt_adjbox: Plot an Adjusted Boxplot for Skew Distributions
# ## Original function to interface
# adjbox(len ~ dose, data = ToothGrowth)
#
# ## The interface puts data as first parameter
# ntbt_adjbox(ToothGrowth, len ~ dose)
#
# ## so it can be used easily in a pipeline.
# ToothGrowth %>%
# ntbt_adjbox(len ~ dose)
#
#
# ## ntbt_glmrob: Robust Fitting of Generalized Linear Models
# data(carrots)
#
# ## Original function to interface
# glmrob(cbind(success, total-success) ~ logdose + block,
# family = binomial, data = carrots, method= "Mqle",
# control= glmrobMqle.control(tcc=1.2))
#
# ## The interface puts data as first parameter
# ntbt_glmrob(carrots, cbind(success, total-success) ~ logdose + block,
# family = binomial, method= "Mqle",
# control= glmrobMqle.control(tcc=1.2))
#
# ## so it can be used easily in a pipeline.
# carrots %>%
# ntbt_glmrob(cbind(success, total-success) ~ logdose + block,
# family = binomial, method= "Mqle",
# control= glmrobMqle.control(tcc=1.2))
#
#
# ## ntbt_lmrob: MM-type Estimators for Linear Regression
# data(coleman)
#
# ## Original function to interface
# set.seed(0)
# lmrob(Y ~ ., data = coleman, setting = "KS2011")
#
# ## The interface puts data as first parameter
# ntbt_lmrob(coleman, Y ~ ., setting = "KS2011")
#
# ## so it can be used easily in a pipeline.
# coleman %>%
# ntbt_lmrob(Y ~ ., setting = "KS2011")
#
#
# ## ntbt_ltsReg: Least Trimmed Squares Robust (High Breakdown) Regression
# data(stackloss)
#
# ## Original function to interface
# ltsReg(stack.loss ~ ., data = stackloss)
#
# ## The interface puts data as first parameter
# ntbt_ltsReg(stackloss, stack.loss ~ .)
#
# ## so it can be used easily in a pipeline.
# stackloss %>%
# ntbt_ltsReg(stack.loss ~ .)
#
#
# ## ntbt_nlrob: Robust Fitting of Nonlinear Regression Models
# DNase1 <- DNase[ DNase$Run == 1, ]
#
# ## Original function to interface
# nlrob(density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),
# data = DNase1, trace = TRUE,
# start = list( Asym = 3, xmid = 0, scal = 1 ))
#
# ## The interface puts data as first parameter
# ntbt_nlrob(DNase1, density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),
# trace = TRUE,
# start = list( Asym = 3, xmid = 0, scal = 1 ))
#
# ## so it can be used easily in a pipeline.
# DNase1 %>%
# ntbt_nlrob(density ~ Asym/(1 + exp(( xmid - log(conc) )/scal ) ),
# trace = TRUE,
# start = list( Asym = 3, xmid = 0, scal = 1 ))
# ## End(Not run)
Run the code above in your browser using DataLab