Learn R Programming

intubate (version 1.0.0)

stats: Interfaces for stats package for data science pipelines.

Description

Interfaces to stats functions that can be used in a pipeline implemented by magrittr.

Usage

ntbt_aggregate(data, ...) ntbt_alias(data, ...) ntbt_ansari.test(data, ...) ntbt_aov(data, ...) ntbt_bartlett.test(data, ...) ntbt_cor.test(data, ...) ntbt_fligner.test(data, ...) ntbt_friedman.test(data, ...) ntbt_ftable(data, ...) ntbt_getInitial(data, ...) ntbt_glm(data, ...) ntbt_kruskal.test(data, ...) ntbt_lm(data, ...) ntbt_loess(data, ...) ntbt_lqs(data, ...) ntbt_model.frame(data, ...) ntbt_model.matrix(data, ...) ntbt_mood.test(data, ...) ntbt_nls(data, ...) ntbt_oneway.test(data, ...) ntbt_ppr(data, ...) ntbt_prcomp(data, ...) ntbt_princomp(data, ...) ntbt_quade.test(data, ...) ntbt_replications(data, ...) ntbt_t.test(data, ...) ntbt_var.test(data, ...) ntbt_wilcox.test(data, ...) ntbt_xtabs(data, ...)

Arguments

data
data frame, tibble, list, ...
...
Other arguments passed to the corresponding interfaced function.

Value

Object returned by interfaced function.

Details

Interfaces call their corresponding interfaced function.

Examples

Run this code
## Not run: 
# library(intubate)
# library(magrittr)
# 
# ## aggregate
# ## Original function to interface
# ag <- aggregate(len ~ ., data = ToothGrowth, mean)
# xtabs(len ~ ., data = ag)
# 
# ## The interface reverses the order of data and formula
# ag <- ntbt_aggregate(ToothGrowth, len ~ ., mean)
# ntbt_xtabs(ag, len ~ .)
# 
# ## so it can be used easily in a pipeline.
# ToothGrowth %>%
#   ntbt_aggregate(len ~ ., mean) %>%
#   ntbt_xtabs(len ~ .)
#   
# esoph %>%
#   ntbt_aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, sum)
# 
# ## alias
# ## Original function to interface
# alias(yield ~ block + N*P*K, npk)
# 
# ## The interface reverses the order of data and formula
# ntbt_alias(npk, yield ~ block + N*P*K)
# 
# ## so it can be used easily in a pipeline.
# npk %>%
#   ntbt_alias(yield ~ block + N*P*K)
# 
# ## ansari.test
# ## Original function to interface
# ansari.test(extra ~ group, data = sleep)
# 
# ## The interface reverses the order of data and formula
# ntbt_ansari.test(data = sleep, extra ~ group)
# 
# ## so it can be used easily in a pipeline.
# library(magrittr)
# sleep %>%
#   ntbt_ansari.test(extra ~ group)
# 
# ## aov
# ## Original function to interface
# aov(yield ~ block + N * P + K, npk)
# 
# ## The interface reverses the order of data and formula
# ntbt_aov(npk, yield ~ block + N * P + K)
# 
# ## so it can be used easily in a pipeline.
# npk %>%
#   ntbt_aov(yield ~ block + N * P + K)
# 
# ## bartlett.test
# ## Original function to interface
# bartlett.test(count ~ spray, data = InsectSprays)
# 
# ## The interface reverses the order of data and formula
# ntbt_bartlett.test(data = InsectSprays, count ~ spray)
# 
# ## so it can be used easily in a pipeline.
# InsectSprays %>%
#   ntbt_bartlett.test(count ~ spray)
# 
# ## cor.test
# ## Original function to interface
# cor.test(~ CONT + INTG, data = USJudgeRatings)
# 
# ## The interface reverses the order of data and formula
# ntbt_cor.test(data = USJudgeRatings, ~ CONT + INTG)
# 
# ## so it can be used easily in a pipeline.
# USJudgeRatings %>%
#   ntbt_cor.test(~ CONT + INTG)
# 
# ## fligner.test
# ## Original function to interface
# fligner.test(count ~ spray, data = InsectSprays)
# 
# ## The interface reverses the order of data and formula
# ntbt_fligner.test(data = InsectSprays, count ~ spray)
# 
# ## so it can be used easily in a pipeline.
# InsectSprays %>%
#   ntbt_fligner.test(count ~ spray)
# 
# ## friedman.test
# wb <- aggregate(warpbreaks$breaks,
#                 by = list(w = warpbreaks$wool,
#                           t = warpbreaks$tension),
#                 FUN = mean)
# 
# ## Original function to interface
# friedman.test(x ~ w | t, data = wb)
# 
# ## The interface reverses the order of data and formula
# ntbt_friedman.test(data = wb, x ~ w | t)
# 
# ## so it can be used easily in a pipeline.
# wb %>%
#   ntbt_friedman.test(x ~ w | t)
# 
# ## ftable
# ## Original function to interface
# x <- ftable(Survived ~ ., data = Titanic)
# ftable(Sex ~ Class + Age, data = x)
# 
# ## The interface reverses the order of data and formula
# x <- ntbt_ftable(data = Titanic, Survived ~ .)
# ftable(data = x, Sex ~ Class + Age)
# 
# ## so it can be used easily in a pipeline.
# Titanic %>%
#   ntbt_ftable(Survived ~ .)
# 
# Titanic %>%
#   ntbt_ftable(Survived ~ .) %>%
#   ntbt_ftable(Sex ~ Class + Age)
# 
# ## getInitial
# PurTrt <- Puromycin[ Puromycin$state == "treated", ]
# 
# ## Original function to interface
# getInitial(rate ~ SSmicmen( conc, Vm, K ), PurTrt)
# 
# ## The interface reverses the order of data and formula
# ntbt_getInitial(PurTrt, rate ~ SSmicmen( conc, Vm, K ))
# 
# ## so it can be used easily in a pipeline.
# PurTrt %>%
#   ntbt_getInitial(rate ~ SSmicmen( conc, Vm, K ))
# 
# ## glm
# utils::data(anorexia, package = "MASS")
# 
# ## Original function to interface
# anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
#                 data = anorexia)
# summary(anorex.1)
# 
# ## The interface reverses the order of data and formula
# anorex.1 <- ntbt_glm(data = anorexia,
#                      formula = Postwt ~ Prewt + Treat + offset(Prewt))
# summary(anorex.1)
# 
# ## so it can be used easily in a pipeline.
# anorexia %>%
#   ntbt_glm(Postwt ~ Prewt + Treat + offset(Prewt)) %>%
#   summary()
# 
# # A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
# data.frame(u = c(5,10,15,20,30,40,60,80,100),
#            lot1 = c(118,58,42,35,27,25,21,19,18)
#            ) %>%
#   ntbt_glm(lot1 ~ log(u), family = Gamma) %>%
#   summary()
# 
# ## kruskal.test
# ## Original function to interface
# kruskal.test(Ozone ~ Month, airquality)
# 
# ## The interface reverses the order of data and formula
# ntbt_kruskal.test(airquality, Ozone ~ Month)
# 
# ## so it can be used easily in a pipeline.
# airquality %>%
#   ntbt_kruskal.test(Ozone ~ Month)
# 
# ## lm
# ## Original function to interface
# lm(sr ~ ., LifeCycleSavings)
# 
# ## The interface reverses the order of data and formula
# ntbt_lm(LifeCycleSavings, sr ~ .)
# 
# ## so it can be used easily in a pipeline.
# library(magrittr)
# LifeCycleSavings %>%
#   ntbt_lm(sr ~ .)
# 
# LifeCycleSavings %>%
#   ntbt_lm(sr ~ .) %>%
#   summary()
# 
# ## loess
# ## Original function to interface
# loess(dist ~ speed, cars)
# 
# ## The interface reverses the order of data and formula
# ntbt_loess(cars, dist ~ speed)
# 
# ## so it can be used easily in a pipeline.
# cars %>%
#   ntbt_loess(dist ~ speed)
#   
# cars %>%
#   ntbt_loess(dist ~ speed,
#              control = loess.control(surface = "direct"))
# 
# ## lqs
# library(MASS)
# 
# ## Original function to interface
# set.seed(123) # make reproducible
# lqs(stack.loss ~ ., data = stackloss)
# 
# ## The interface reverses the order of data and formula
# set.seed(123) # make reproducible
# ntbt_lqs(data = stackloss, stack.loss ~ .)
# 
# ## so it can be used easily in a pipeline.
# set.seed(123) # make reproducible
# stackloss %>%
#   ntbt_lqs(stack.loss ~ .)
# 
# ## model.frame
# ## Original function to interface
# model.frame(dist ~ speed, data = cars)
# 
# ## The interface reverses the order of data and formula
# ntbt_model.frame(data = cars, dist ~ speed)
# 
# ## so it can be used easily in a pipeline.
# cars %>%
#   ntbt_model.frame(dist ~ speed)
# 
# ## model.matrix
# dd <- data.frame(a = gl(3, 4),
#                  b = gl(4, 1, 12)) # balanced 2-way
# 
# ## Original function to interface
# model.matrix(~ a + b, dd)
# 
# ## The interface reverses the order of data and formula
# ntbt_model.matrix(dd, ~ a + b)
# 
# ## so it can be used easily in a pipeline.
# dd %>%
#   ntbt_model.matrix(~ a + b)
# 
# ## mood.test
# ## Original function to interface
# mood.test(extra ~ group, data = sleep)
# 
# ## The interface reverses the order of data and formula
# ntbt_mood.test(data = sleep, extra ~ group)
# 
# ## so it can be used easily in a pipeline.
# sleep %>%
#   ntbt_mood.test(extra ~ group)
# 
# ## nls
# ## Original function to interface
# nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase)
# 
# ## The interface reverses the order of data and formula
# ntbt_nls(data = DNase, density ~ SSlogis(log(conc), Asym, xmid, scal))
# 
# ## so it can be used easily in a pipeline.
# DNase %>%
#   ntbt_nls(density ~ SSlogis(log(conc), Asym, xmid, scal))
# 
# ## oneway.test
# ## Original function to interface
# oneway.test(extra ~ group, data = sleep)
# 
# ## The interface reverses the order of data and formula
# ntbt_oneway.test(data = sleep, extra ~ group)
# 
# ## so it can be used easily in a pipeline.
# sleep %>%
#   ntbt_oneway.test(extra ~ group)
# 
# ## ppr
# ## Original function to interface
# ppr(log(perm) ~ area + peri + shape, data = rock,
#     nterms = 2, max.terms = 5)
# 
# ## The interface reverses the order of data and formula
# ntbt_ppr(data = rock, log(perm) ~ area + peri + shape,
#          nterms = 2, max.terms = 5)
# 
# ## so it can be used easily in a pipeline.
# rock %>%
#   ntbt_ppr(log(perm) ~ area + peri + shape,
#            nterms = 2, max.terms = 5)
# 
# ## prcomp
# ## Original function to interface
# prcomp(~ Murder + Assault + Rape, data = USArrests, scale = TRUE)
# 
# ## The interface reverses the order of data and formula
# ntbt_prcomp(data = USArrests, ~ Murder + Assault + Rape, scale = TRUE)
# 
# ## so it can be used easily in a pipeline.
# USArrests %>%
#   ntbt_prcomp(~ Murder + Assault + Rape, scale = TRUE)
# 
# ## princomp
# ## Original function to interface
# princomp(~ ., data = USArrests, cor = TRUE)
# 
# ## The interface reverses the order of data and formula
# ntbt_princomp(data = USArrests, ~ ., cor = TRUE)
# 
# ## so it can be used easily in a pipeline.
# USArrests %>%
#   ntbt_princomp(~ ., cor = TRUE)
# 
# ## quade.test
# wb <- aggregate(warpbreaks$breaks,
#                 by = list(w = warpbreaks$wool,
#                           t = warpbreaks$tension),
#                 FUN = mean)
# 
# ## Original function to interface
# quade.test(x ~ w | t, data = wb)
# 
# ## The interface reverses the order of data and formula
# ntbt_quade.test(data = wb, x ~ w | t)
# 
# ## so it can be used easily in a pipeline.
# wb %>%
#   ntbt_quade.test(x ~ w | t)
# 
# ## replications
# ## From Venables and Ripley (2002) p.165.
# N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
# P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
# K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
# yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
#            55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
# 
# npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
#                   K = factor(K), yield = yield)
# 
# ## Original function to interface
# replications(~ . - yield, npk)
# 
# ## The interface reverses the order of data and formula
# ntbt_replications(npk, ~ . - yield)
# 
# ## so it can be used easily in a pipeline.
# npk %>%
#   ntbt_replications(~ . - yield)
# 
# ## t.test
# ## Original function to interface
# t.test(extra ~ group, data = sleep)
# 
# ## The interface reverses the order of data and formula
# ntbt_t.test(data = sleep, extra ~ group)
# 
# ## so it can be used easily in a pipeline.
# sleep %>%
#   ntbt_t.test(extra ~ group)
# 
# ## var.test
# ## Original function to interface
# var.test(extra ~ group, data = sleep)
# 
# ## The interface reverses the order of data and formula
# ntbt_var.test(data = sleep, extra ~ group)
# 
# ## so it can be used easily in a pipeline.
# sleep %>%
#   ntbt_var.test(extra ~ group)
# 
# ## wilcox.test
# ## Original function to interface
# wilcox.test(extra ~ group, data = sleep)
# 
# ## The interface reverses the order of data and formula
# ntbt_wilcox.test(data = sleep, extra ~ group)
# 
# ## so it can be used easily in a pipeline.
# sleep %>%
#   ntbt_wilcox.test(extra ~ group)
# 
# ## xtabs
# ## Original function to interface
# ag <- aggregate(len ~ ., data = ToothGrowth, mean)
# xtabs(len ~ ., data = ag)
# 
# ## The interface reverses the order of data and formula
# ag <- ntbt_aggregate(ToothGrowth, len ~ ., mean)
# ntbt_xtabs(ag, len ~ .)
# 
# ## so it can be used easily in a pipeline.
# ToothGrowth %>%
#   ntbt_aggregate(len ~ ., mean) %>%
#   ntbt_xtabs(len ~ .)
# ## End(Not run)

Run the code above in your browser using DataLab