## Not run:
# library(intubate)
# library(magrittr)
# library(vcd)
#
#
# ## ntbt_agreementplot: Bangdiwala's Observer Agreement Chart
# ## Original function to interface
# agreementplot(Freq ~ Gender + Admit, as.data.frame(UCBAdmissions))
#
# ## The interface puts data as first parameter
# ntbt_agreementplot(as.data.frame(UCBAdmissions), Freq ~ Gender + Admit)
#
# ## so it can be used easily in a pipeline.
# as.data.frame(UCBAdmissions) %>%
# ntbt_agreementplot(Freq ~ Gender + Admit)
#
#
# ## ntbt_assoc: Extended Association Plots
# ## Original function to interface
# assoc(Freq ~ Gender + Admit, data = as.data.frame(UCBAdmissions))
#
# ## The interface puts data as first parameter
# ntbt_assoc(as.data.frame(UCBAdmissions), Freq ~ Gender + Admit)
#
# ## so it can be used easily in a pipeline.
# as.data.frame(UCBAdmissions) %>%
# ntbt_assoc(Freq ~ Gender + Admit)
#
#
# ## ntbt_cd_plot: Conditional Density Plots
# data("Arthritis")
# ## Original function to interface
# cd_plot(Improved ~ Age, data = Arthritis)
#
# ## The interface puts data as first parameter
# ntbt_cd_plot(Arthritis, Improved ~ Age)
#
# ## so it can be used easily in a pipeline.
# Arthritis %>%
# ntbt_cd_plot(Improved ~ Age)
#
#
# ## ntbt_cotabplot: Coplot for Contingency Tables
# ## Original function to interface
# cotabplot(~ Admit + Gender | Dept, data = UCBAdmissions)
#
# ## The interface puts data as first parameter
# ntbt_cotabplot(UCBAdmissions, ~ Admit + Gender | Dept)
#
# ## so it can be used easily in a pipeline.
# UCBAdmissions %>%
# ntbt_cotabplot(~ Admit + Gender | Dept)
#
#
# ## ntbt_loddsratio: Calculate Generalized Log Odds Ratios for Frequency Tables
# data(Punishment, package = "vcd")
#
# ## Original function to interface
# loddsratio(Freq ~ memory + attitude | age + education, data = Punishment)
#
# ## The interface puts data as first parameter
# ntbt_loddsratio(Punishment, Freq ~ memory + attitude | age + education)
#
# ## so it can be used easily in a pipeline.
# Punishment %>%
# ntbt_loddsratio(Freq ~ memory + attitude | age + education)
#
#
# ## ntbt_mosaic: Extended Mosaic Plots
# library(MASS)
# data("Titanic")
# mosaic(Titanic)
#
# ## Original function to interface
# mosaic(~ Sex + Age + Survived, data = Titanic,
# main = "Survival on the Titanic", shade = TRUE, legend = TRUE)
#
# ## The interface puts data as first parameter
# ntbt_mosaic(Titanic, ~ Sex + Age + Survived,
# main = "Survival on the Titanic", shade = TRUE, legend = TRUE)
#
# ## so it can be used easily in a pipeline.
# Titanic %>%
# ntbt_mosaic(~ Sex + Age + Survived,
# main = "Survival on the Titanic", shade = TRUE, legend = TRUE)
#
#
# ## ntbt_sieve: Extended Sieve Plots
# data("VisualAcuity")
#
# ## Original function to interface
# sieve(Freq ~ right + left, data = VisualAcuity)
#
# ## The interface puts data as first parameter
# ntbt_sieve(VisualAcuity, Freq ~ right + left)
#
# ## so it can be used easily in a pipeline.
# VisualAcuity %>%
# ntbt_sieve(Freq ~ right + left)
#
#
# ## ntbt_spine: Spine Plots and Spinograms
# data("Arthritis")
#
# ## Original function to interface
# spine(Improved ~ Treatment, data = Arthritis)
#
# ## The interface puts data as first parameter
# ntbt_spine(Arthritis, Improved ~ Treatment)
#
# ## so it can be used easily in a pipeline.
# Arthritis %>%
# ntbt_spine(Improved ~ Treatment)
#
#
# ## ntbt_structable: Structured Contingency Tables
# ## Original function to interface
# structable(Sex + Class ~ Survived + Age, data = Titanic)
#
# ## The interface puts data as first parameter
# ntbt_structable(Titanic, Sex + Class ~ Survived + Age)
#
# ## so it can be used easily in a pipeline.
# Titanic %>%
# ntbt_structable(Sex + Class ~ Survived + Age)
# ## End(Not run)
Run the code above in your browser using DataLab