Learn R Programming

invgamma (version 1.1)

invchisq: The Inverse (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the inverse chi-squared distribution.

Usage

dinvchisq(x, df, ncp = 0, log = FALSE)

pinvchisq(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

qinvchisq(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

rinvchisq(n, df, ncp = 0)

Arguments

x, q
vector of quantiles.
df
degrees of freedom (non-negative, but can be non-integer).
ncp
non-centrality parameter (non-negative).
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The functions (d/p/q/r)invchisq simply wrap those of the standard (d/p/q/r)chisq R implementation, so look at, say, dchisq for details.

See Also

dchisq; these functions just wrap the (d/p/q/r)chisq functions.

Examples

Run this code

s <- seq(0, 3, .01)
plot(s, dinvchisq(s, 3), type = 'l')

f <- function(x) dinvchisq(x, 3)
q <- 2
integrate(f, 0, q)
(p <- pinvchisq(q, 3))
qinvchisq(p, 3) # = q
mean(rinvchisq(1e5, 3) <= q)




f <- function(x) dinvchisq(x, 3, ncp = 2)
q <- 1.5
integrate(f, 0, q)
(p <- pinvchisq(q, 3, ncp = 2))
qinvchisq(p, 3, ncp = 2) # = q
mean(rinvchisq(1e7, 3, ncp = 2) <= q)



Run the code above in your browser using DataLab