Learn R Programming

ir (version 0.4.1)

separate.ir: Separate a character column in an ir object into multiple columns with a regular expression or numeric locations

Description

Separate a character column in an ir object into multiple columns with a regular expression or numeric locations

Usage

separate.ir(
  data,
  col,
  into,
  sep = "[^[:alnum:]]+",
  remove = TRUE,
  convert = FALSE,
  extra = "warn",
  fill = "warn",
  ...
)

Value

.data with separated columns. If the spectra column is dropped or invalidated (see ir_new_ir()), the ir class is dropped, else the object is of class ir.

Arguments

data

An object of class ir.

col

<tidy-select> Column to expand.

into

Names of new variables to create as character vector. Use NA to omit the variable in the output.

sep

Separator between columns.

If character, sep is interpreted as a regular expression. The default value is a regular expression that matches any sequence of non-alphanumeric values.

If numeric, sep is interpreted as character positions to split at. Positive values start at 1 at the far-left of the string; negative value start at -1 at the far-right of the string. The length of sep should be one less than into.

remove

If TRUE, remove input column from output data frame.

convert

If TRUE, will run type.convert() with as.is = TRUE on new columns. This is useful if the component columns are integer, numeric or logical.

NB: this will cause string "NA"s to be converted to NAs.

extra

If sep is a character vector, this controls what happens when there are too many pieces. There are three valid options:

  • "warn" (the default): emit a warning and drop extra values.

  • "drop": drop any extra values without a warning.

  • "merge": only splits at most length(into) times

fill

If sep is a character vector, this controls what happens when there are not enough pieces. There are three valid options:

  • "warn" (the default): emit a warning and fill from the right

  • "right": fill with missing values on the right

  • "left": fill with missing values on the left

...

Additional arguments passed on to methods.

See Also

Other tidyverse: arrange.ir(), distinct.ir(), extract.ir(), filter-joins, filter.ir(), group_by, mutate, mutate-joins, nest, pivot_longer.ir(), pivot_wider.ir(), rename, rowwise.ir(), select.ir(), separate_rows.ir(), slice, summarize, unite.ir()

Examples

Run this code
## separate
ir_sample_data |>
  tidyr::separate(
    col = "id_sample",  c("a", "b", "c")
  )


Run the code above in your browser using DataLab