Learn R Programming

irace (version 3.5)

irace-package: The irace package: tools:::Rd_package_title("irace")

Description

tools:::Rd_package_description("irace")

Arguments

Author

Maintainers: Manuel López-Ibáñez and Leslie Pérez Cáceres irace-package@googlegroups.com

Details

License: GPL (>= 2)

References

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm Configuration. Operations Research Perspectives, 2016. tools:::Rd_expr_doi("10.1016/j.orp.2016.09.002")

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Birattari. The irace package, Iterated Race for Automatic Algorithm Configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

Manuel López-Ibáñez and Thomas Stützle. The Automatic Design of Multi-Objective Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 2012.

See Also

irace.main to start irace with a given scenario.

Examples

Run this code
 #######################################################################
 # This example illustrates how to tune the parameters of the simulated
 # annealing algorithm (SANN) provided by the optim() function in the
 # R base package.  The goal in this example is to optimize instances of
 # the following family:
 # f(x) = lambda * f_rastrigin(x) + (1 - lambda) * f_rosenbrock(x)
 # where lambda follows a normal distribution whose mean is 0.9 and
 # standard deviation is 0.02. f_rastrigin and f_rosenbrock are the
 # well-known Rastrigin and Rosenbrock benchmark functions (taken from
 # the cmaes package). In this scenario, different instances are given
 # by different values of lambda.
 #######################################################################
 ## First we provide an implementation of the functions to be optimized:
 f_rosenbrock <- function (x) {
   d <- length(x)
   z <- x + 1
   hz <- z[1:(d - 1)]
   tz <- z[2:d]
   s <- sum(100 * (hz^2 - tz)^2 + (hz - 1)^2)
   return(s)
 }
 f_rastrigin <- function (x) {
   sum(x * x - 10 * cos(2 * pi * x) + 10)
 }
 
 ## We generate 20 instances (in this case, weights):
 weights <- rnorm(20, mean = 0.9, sd = 0.02)
 
 ## On this set of instances, we are interested in optimizing two
 ## parameters of the SANN algorithm: tmax and temp. We setup the
 ## parameter space as follows:
 parameters_table <- '
 tmax "" i,log (1, 5000)
 temp "" r (0, 100)
 '
 
 ## We use the irace function readParameters to read this table:
 parameters <- readParameters(text = parameters_table)
 
 ## Next, we define the function that will evaluate each candidate
 ## configuration on a single instance. For simplicity, we restrict to
 ## three-dimensional functions and we set the maximum number of
 ## iterations of SANN to 1000.
 target_runner <- function(experiment, scenario)
 {
   instance <- experiment$instance
   configuration <- experiment$configuration
 
   D <- 3
   par <- runif(D, min=-1, max=1)
   fn <- function(x) {
     weight <- instance
     return(weight * f_rastrigin(x) + (1 - weight) * f_rosenbrock(x))
   }
   res <- stats::optim(par,fn, method="SANN",
                control=list(maxit=1000
                  , tmax = as.numeric(configuration[["tmax"]])
                  , temp = as.numeric(configuration[["temp"]])
                  ))
   ## New output interface in irace 2.0. This list may also contain:
   ## - 'time' if irace is called with 'maxTime'
   ## - 'error' is a string used to report an error
   ## - 'outputRaw' is a string used to report the raw output of calls to
   ##   an external program or function.
   ## - 'call' is a string used to report how target_runner called the
   ##   external program or function.
   return(list(cost = res$value))
 }
 
 ## We define a configuration scenario by setting targetRunner to the
 ## function define above, instances to the first 10 random weights, and
 ## a maximum budget of 'maxExperiments' calls to targetRunner.
 scenario <- list(targetRunner = target_runner,
                  instances = weights[1:10],
                  maxExperiments = 500,
                  # Do not create a logFile
                  logFile = "")
 
 ## We check that the scenario is valid. This will also try to execute
 ## target_runner.
 checkIraceScenario(scenario, parameters = parameters)
 
 # \donttest{
 ## We are now ready to launch irace. We do it by means of the irace
 ## function. The function will print information about its
 ## progress. This may require a few minutes, so it is not run by default.
 tuned_confs <- irace(scenario = scenario, parameters = parameters)
 
 ## We can print the best configurations found by irace as follows:
 configurations.print(tuned_confs)
 
 ## We can evaluate the quality of the best configuration found by
 ## irace versus the default configuration of the SANN algorithm on
 ## the other 10 instances previously generated.
 ## To do so, first we apply the default configuration of the SANN
 ## algorithm to these instances:
 test <- function(configuration)
 {
   res <- lapply(weights[11:20],
                 function(x) target_runner(
                               experiment = list(instance = x,
                                                 configuration = configuration),
                               scenario = scenario))
   return (sapply(res, getElement, name = "cost"))
 }
 default <- test(data.frame(tmax=10, temp=10))
 ## We extract and apply the winning configuration found by irace
 ## to these instances:
 tuned <- test(removeConfigurationsMetaData(tuned_confs[1,]))
 
 ## Finally, we can compare using a boxplot the quality obtained with the
 ## default parametrization of SANN and the quality obtained with the
 ## best configuration found by irace.
 boxplot(list(default = default, tuned = tuned))
# }

Run the code above in your browser using DataLab