# NOT RUN {
### Example Designs ###
# Fixed length test IRT test with ability estimation EAP-ML
n_items <- 30
ip <- itempool(data.frame(a = runif(n_items, .5, 1.5), b = rnorm(n_items)))
cd <- create_cat_design(ip = ip, next_item_rule = 'random',
termination_rule = 'min_item',
termination_par = list('min_item' = n_items))
cd
create_cat_design(ip = ip, next_item_rule = 'random')
n_ip <- 55
ip <- itempool(data.frame(a = runif(n_ip, .5, 1.5), b = rnorm(n_ip)))
# Check the default:
create_cat_design()
create_cat_design(ip = ip)
### Termination Rule ###
create_cat_design(
termination_rule = c('min_item', 'min_se', 'max_item'),
termination_par = list(min_item = 10, min_se = .33, max_item = 20))
cd <- create_cat_design(ip = ip, termination_rule = c('min_item', 'min_se'),
termination_par = list(min_item = 10, min_se = .33))
### Next Item Rule ###
create_cat_design(ip = ip, next_item_rule = 'random', next_item_par = NULL)
create_cat_design(
ip = ip, termination_rule = c('min_item', 'max_item'),
termination_par = list(min_item = 20, max_item = 20),
next_item_rule = 'fixed',
next_item_par = list(item_id = ip$id[1:20]))
# Linear test where all of the items in the item pool administered in the
# same order as item pool
ip <- generate_ip(n = 15)
create_cat_design(
ip = ip, termination_rule = c('max_item'),
termination_par = list(max_item = 15),
next_item_rule = 'fixed')
# Generate an item pool with two testlets and three standalone items and
# administer first seven items as a linear test.
ip <- c(generate_testlet(n = 2, id = "t1"), generate_ip(n = 3),
generate_testlet(n = 5, id = "t2"))
create_cat_design(
ip = ip, termination_rule = c('max_item'),
termination_par = list(max_item = 7),
next_item_rule = 'fixed')
# A linear test where the item order is predefined.
ip1 <- itempool(data.frame(b = rnorm(5)), id = paste0("i",1:5))
cd <- create_cat_design(
ip = ip1,
next_item_rule = 'fixed',
next_item_par = list(item_id = c("i3", "i2", "i4", "i5", "i1")),
ability_est_rule = "eap",
termination_rule = 'max_item', termination_par = list(max_item = 5))
### Ability Estimation Rule ###
create_cat_design(
ability_est_rule = 'eap',
ability_est_par = list(prior_dist = 'unif',
prior_par = list(min = -2, max = 2),
min_theta = -4, max_theta = 4,
no_of_quadrature = 31))
create_cat_design(
ability_est_rule = 'ml',
ability_est_par = list(min_theta = -4, max_theta = 4, criterion = 0.01))
### Exposure Control ###
create_cat_design(exposure_control_rule = 'randomesque',
exposure_control_par = list(num_items = 1))
# 5-4-3-2-1 exposure control
create_cat_design(
exposure_control_rule = 'randomesque',
exposure_control_par = lapply(c(5:1, rep(1, 15)),
function(x) list(num_items = x)))
### Content Balancing ###
create_cat_design(
content_bal_rule = 'max_discrepancy',
content_bal_par = list(target_dist = c(
Geometry = .3, `Rational Numbers` = .2, Algebra = .5)))
# }
Run the code above in your browser using DataLab