ip <- generate_ip(n = 7)
resp <- sim_resp(ip, theta = rnorm(3))
### EAP estimation ###
est_ability(resp, ip)
est_ability(resp, ip, number_of_quads = 81)
# The default prior_dist is 'norm'. prior_pars = c(mean, sd)
est_ability(resp, ip, prior_pars = c(0, 3))
# prior_pars = c(min, max)
est_ability(resp, ip, prior_dist = 'unif', prior_pars = c(-3, 3))
# prior_pars = c(df)
est_ability(resp, ip, prior_dist = 't', prior_pars = 3)
# prior_pars = c(location, scale)
est_ability(resp, ip, prior_dist = 'cauchy', prior_pars = c(0, 1))
### MAP estimation (Bayes Modal estimation) ###
est_ability(resp, ip, method = "map")
# The default prior_dist is 'norm'. prior_pars = c(mean, sd)
est_ability(resp, ip, method = "map", prior_pars = c(0, 2))
### Maximum Likelihood estimation ###
est_ability(resp, ip, method = 'ml')
est_ability(resp, ip, method = 'ml', tol = 1e-8)
est_ability(resp = rep(1, length(ip)), ip, method = 'ml')
est_ability(resp = rep(1, length(ip)), ip, method = 'ml',
theta_range = c(-3, 3))
### Owen's Bayesian ability estimation ###
est_ability(resp, ip, method = 'owen')
est_ability(resp, ip, method = 'owen', prior_pars = c(0, 3))
Run the code above in your browser using DataLab