PAM assigns m rows into K clusters. This function enable statistical
evaluation if the cluster membership is correctly assigned. Each of m p-values refers to
the statistical test of that row with regard to its assigned cluster.
Its resampling strategy accounts for the over-fitting characteristics due to direct computation of clusters from the observed data
and protects against an anti-conservative bias.
For a large dataset, PAM could be too slow. Consider using cluster::clara and jackstraw::jackstraw_clara.
The input data (dat) must be of a class `matrix`.
References
Chung (2020) Statistical significance of cluster membership for unsupervised evaluation of cell identities. Bioinformatics, 36(10): 3107–3114 tools:::Rd_expr_doi("10.1093/bioinformatics/btaa087")