Learn R Programming

jagsUI (version 1.6.2)

pp.check: Posterior Predictive Checks for Bayesian Analyses fit in JAGS

Description

A simple interface for generating a posterior predictive check plot for a JAGS analysis fit using jagsUI, based on the posterior distributions of discrepency metrics specified by the user and calculated and returned by JAGS (for example, sums of residuals). The user supplies the name of the discrepancy metric calculated for the real data in the argument observed, and the corresponding discrepancy for data simulated by the model in argument simulated. The posterior distributions of the two parameters will be plotted in X-Y space and a Bayesian p-value calculated.

Usage

pp.check(x, observed, simulated, xlab='Observed data', ylab='Simulated data', 
                     main='Posterior Predictive Check', ...)

Arguments

x

A jagsUI object generated using the jags function

observed

The name of the parameter (as a string) representing the fit of the observed data (e.g. residuals)

simulated

The name of the corresponding parameter (as a string) representing the fit of the new simulated data

xlab

Customize x-axis label

ylab

Customize y-axis label

main

Customize plot title

...

Additional arguments passed to plot.default

Author

Ken Kellner contact@kenkellner.com.

Examples

Run this code
#Analyze Longley economic data in JAGS
#Number employed as a function of GNP
#See ?jags for a more detailed example

#Get data
data(longley)
gnp <- longley$GNP
employed <- longley$Employed
n <- length(employed)
data <- list(gnp=gnp,employed=employed,n=n)

#Identify filepath of model file
modfile <- tempfile()

#Write model
#Note calculation of discrepancy stats fit and fit.new
#(sums of residuals)
writeLines("
model{

  #Likelihood
  for (i in 1:n){ 

    employed[i] ~ dnorm(mu[i], tau)     
    mu[i] <- alpha + beta*gnp[i]
    
    res[i] <- employed[i] - mu[i]   
    emp.new[i] ~ dnorm(mu[i], tau)
    res.new[i] <- emp.new[i] - mu[i]

  }
    
  #Priors
  alpha ~ dnorm(0, 0.00001)
  beta ~ dnorm(0, 0.00001)
  sigma ~ dunif(0,1000)
  tau <- pow(sigma,-2)
  
  #Derived parameters
  fit <- sum(res[])
  fit.new <- sum(res.new[])

}
", con=modfile)

#Set parameters to monitor
params <- c('alpha','beta','sigma','fit','fit.new')

#Run analysis

out <- jags(data = data,
            inits = NULL,
            parameters.to.save = params,
            model.file = modfile,
            n.chains = 3,
            n.adapt = 100,
            n.iter = 1000,
            n.burnin = 500,
            n.thin = 2)

#Examine output summary

out

#Posterior predictive check plot

pp.check(out, observed = 'fit', simulated = 'fit.new')

Run the code above in your browser using DataLab