- data
the data as a data frame
- vars
a vector of strings naming the variables of interest in
data
- nFactorMethod
'parallel'
(default), 'eigen'
or
'fixed'
, the way to determine the number of factors
- nFactors
an integer (default: 1), the number of factors in the model
- minEigen
a number (default: 0), the minimal eigenvalue for a factor
to be included in the model
- extraction
'minres'
(default), 'ml'
, or 'pa'
use respectively 'minimum residual', 'maximum likelihood', or 'prinicipal
axis' as the factor extraction method
- rotation
'none'
, 'varimax'
, 'quartimax'
,
'promax'
, 'oblimin'
(default), or 'simplimax'
, the
rotation to use in estimation
- hideLoadings
a number (default: 0.3), hide factor loadings below
this value
- sortLoadings
TRUE
or FALSE
(default), sort the factor
loadings by size
- screePlot
TRUE
or FALSE
(default), show scree plot
- eigen
TRUE
or FALSE
(default), show eigenvalue table
- factorCor
TRUE
or FALSE
(default), show inter-factor
correlations
- factorSummary
TRUE
or FALSE
(default), show factor
summary
- modelFit
TRUE
or FALSE
(default), show model fit
measures and test
- kmo
TRUE
or FALSE
(default), show Kaiser-Meyer-Olkin
(KMO) measure of sampling adequacy (MSA) results
- bartlett
TRUE
or FALSE
(default), show Bartlett's test
of sphericity results
- factorScoreMethod
'Thurstone'
(default), 'Bartlett'
,
'tenBerge'
, 'Anderson'
, or 'Harman'
use respectively
'Thurstone', 'Bartlett', 'ten Berge', 'Anderson & Rubin', or 'Harman'
method for estimating factor scores