data('mtcars')
tab <- table('gear'=mtcars$gear, 'cyl'=mtcars$cyl)
dat <- as.data.frame(tab)
logLinear(data = dat, factors = vars(gear, cyl), counts = Freq,
blocks = list(list("gear", "cyl", c("gear", "cyl"))),
refLevels = list(
list(var="gear", ref="3"),
list(var="cyl", ref="4")))
#
# LOG-LINEAR REGRESSION
#
# Model Fit Measures
# ---------------------------------------
# Model Deviance AIC R²-McF
# ---------------------------------------
# 1 4.12e-10 41.4 1.000
# ---------------------------------------
#
#
# MODEL SPECIFIC RESULTS
#
# MODEL 1
#
# Model Coefficients
# ------------------------------------------------------------------
# Predictor Estimate SE Z p
# ------------------------------------------------------------------
# Intercept -4.71e-16 1.00 -4.71e-16 1.000
# gear:
# 4 – 3 2.079 1.06 1.961 0.050
# 5 – 3 0.693 1.22 0.566 0.571
# cyl:
# 6 – 4 0.693 1.22 0.566 0.571
# 8 – 4 2.485 1.04 2.387 0.017
# gear:cyl:
# (4 – 3):(6 – 4) -1.386 1.37 -1.012 0.311
# (5 – 3):(6 – 4) -1.386 1.73 -0.800 0.423
# (4 – 3):(8 – 4) -26.867 42247.17 -6.36e -4 0.999
# (5 – 3):(8 – 4) -2.485 1.44 -1.722 0.085
# ------------------------------------------------------------------
#
#
Run the code above in your browser using DataLab