Learn R Programming

jmv (version 2.5.6)

logRegOrd: Ordinal Logistic Regression

Description

Ordinal Logistic Regression

Usage

logRegOrd(data, dep, covs = NULL, factors = NULL,
  blocks = list(list()), refLevels = NULL, modelTest = FALSE,
  dev = TRUE, aic = TRUE, bic = FALSE, pseudoR2 = list("r2mf"),
  omni = FALSE, thres = FALSE, ci = FALSE, ciWidth = 95,
  OR = FALSE, ciOR = FALSE, ciWidthOR = 95)

Value

A results object containing:

results$modelFita table
results$modelCompa table
results$modelsan array of model specific results

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelFit$asDF

as.data.frame(results$modelFit)

Arguments

data

the data as a data frame

dep

a string naming the dependent variable from data, variable must be a factor

covs

a vector of strings naming the covariates from data

factors

a vector of strings naming the fixed factors from data

blocks

a list containing vectors of strings that name the predictors that are added to the model. The elements are added to the model according to their order in the list

refLevels

a list of lists specifying reference levels of the dependent variable and all the factors

modelTest

TRUE or FALSE (default), provide the model comparison between the models and the NULL model

dev

TRUE (default) or FALSE, provide the deviance (or -2LogLikelihood) for the models

aic

TRUE (default) or FALSE, provide Aikaike's Information Criterion (AIC) for the models

bic

TRUE or FALSE (default), provide Bayesian Information Criterion (BIC) for the models

pseudoR2

one or more of 'r2mf', 'r2cs', or 'r2n'; use McFadden's, Cox & Snell, and Nagelkerke pseudo-R², respectively

omni

TRUE or FALSE (default), provide the omnibus likelihood ratio tests for the predictors

thres

TRUE or FALSE (default), provide the thresholds that are used as cut-off scores for the levels of the dependent variable

ci

TRUE or FALSE (default), provide a confidence interval for the model coefficient estimates

ciWidth

a number between 50 and 99.9 (default: 95) specifying the confidence interval width

OR

TRUE or FALSE (default), provide the exponential of the log-odds ratio estimate, or the odds ratio estimate

ciOR

TRUE or FALSE (default), provide a confidence interval for the model coefficient odds ratio estimates

ciWidthOR

a number between 50 and 99.9 (default: 95) specifying the confidence interval width

Examples

Run this code
set.seed(1337)

y <- factor(sample(1:3, 100, replace = TRUE))
x1 <- rnorm(100)
x2 <- rnorm(100)

df <- data.frame(y=y, x1=x1, x2=x2)

logRegOrd(data = df, dep = y,
          covs = vars(x1, x2),
          blocks = list(list("x1", "x2")))

#
#  ORDINAL LOGISTIC REGRESSION
#
#  Model Fit Measures
#  ---------------------------------------
#    Model    Deviance    AIC    R²-McF
#  ---------------------------------------
#        1         218    226    5.68e-4
#  ---------------------------------------
#
#
#  MODEL SPECIFIC RESULTS
#
#  MODEL 1
#
#  Model Coefficients
#  ----------------------------------------------------
#    Predictor    Estimate    SE       Z        p
#  ----------------------------------------------------
#    x1             0.0579    0.193    0.300    0.764
#    x2             0.0330    0.172    0.192    0.848
#  ----------------------------------------------------
#
#

Run the code above in your browser using DataLab