#Then, we define all the inputs:
# nburn is smaller than needed. This is
#just because of CRAN policies on the examples.
Y.con=sldata[,c("measure","age")]
Y.cat=sldata[,c("social"), drop=FALSE]
Y.numcat=matrix(4,1,1)
X=data.frame(rep(1,300),sldata[,c("sex")])
colnames(X)<-c("const", "sex")
beta.start<-matrix(0,2,5)
l1cov.start<-diag(1,5)
l1cov.prior=diag(1,5);
nburn=as.integer(100);
nbetween=as.integer(100);
nimp=as.integer(5);
#Then we run the sampler:
imp<-jomo1mix(Y.con,Y.cat,Y.numcat,X,beta.start,l1cov.start,
l1cov.prior,nburn,nbetween,nimp)
cat("Original value was missing(",imp[1,1],"), imputed value:", imp[301,1])
# Check help page for function jomo to see how to fit the model and
# combine estimates with Rubin's rules
Run the code above in your browser using DataLab