# This is the schema from ?json_validator
schema <- '{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Product",
"description": "A product from Acme\'s catalog",
"type": "object",
"properties": {
"id": {
"description": "The unique identifier for a product",
"type": "integer"
},
"name": {
"description": "Name of the product",
"type": "string"
},
"price": {
"type": "number",
"minimum": 0,
"exclusiveMinimum": true
},
"tags": {
"type": "array",
"items": {
"type": "string"
},
"minItems": 1,
"uniqueItems": true
}
},
"required": ["id", "name", "price"]
}'
# We're going to use a validator object below
v <- jsonvalidate::json_validator(schema, "ajv")
# And this is some data that we might generate in R that we want to
# serialise using that schema
x <- list(id = 1, name = "apple", price = 0.50, tags = "fruit")
# If we serialise to json, then 'id', 'name' and "price' end up a
# length 1-arrays
jsonlite::toJSON(x)
# ...and that fails validation
v(jsonlite::toJSON(x))
# If we auto-unbox then 'fruit' ends up as a string and not an array,
# also failing validation:
jsonlite::toJSON(x, auto_unbox = TRUE)
v(jsonlite::toJSON(x, auto_unbox = TRUE))
# Using json_serialise we can guide the serialisation process using
# the schema:
jsonvalidate::json_serialise(x, schema)
# ...and this way we do pass validation:
v(jsonvalidate::json_serialise(x, schema))
# It is typically much more efficient to construct a json_schema
# object first and do both operations with it:
obj <- jsonvalidate::json_schema$new(schema)
json <- obj$serialise(x)
obj$validate(json)
Run the code above in your browser using DataLab