Learn R Programming

jstable

Regression Tables from ‘GLM’, ‘GEE’, ‘GLMM’, ‘Cox’ and ‘survey’ Results for Publication.

Install

install.packages("jstable")


## From github: latest version
remotes::install_github('jinseob2kim/jstable')
library(jstable)

GLM Table

## Gaussian
glm_gaussian <- glm(mpg~cyl + disp, data = mtcars)
glmshow.display(glm_gaussian, decimal = 2)
## $first.line
## [1] "Linear regression predicting mpg\n"
## 
## $table
##      crude coeff.(95%CI)   crude P value adj. coeff.(95%CI)    adj. P value
## cyl  "-2.88 (-3.51,-2.24)" "< 0.001"     "-1.59 (-2.98,-0.19)" "0.034"     
## disp "-0.04 (-0.05,-0.03)" "< 0.001"     "-0.02 (-0.04,0)"     "0.054"     
## 
## $last.lines
## [1] "No. of observations = 32\nR-squared = 0.7596\nAIC value = 167.1456\n\n"
## 
## attr(,"class")
## [1] "display" "list"
## Binomial
glm_binomial <- glm(vs~cyl + disp, data = mtcars, family = binomial)
glmshow.display(glm_binomial, decimal = 2)
## $first.line
## [1] "Logistic regression predicting vs\n"
## 
## $table
##      crude OR.(95%CI)   crude P value adj. OR.(95%CI)    adj. P value
## cyl  "0.2 (0.08,0.56)"  "0.002"       "0.15 (0.02,1.02)" "0.053"     
## disp "0.98 (0.97,0.99)" "0.002"       "1 (0.98,1.03)"    "0.715"     
## 
## $last.lines
## [1] "No. of observations = 32\nAIC value = 23.8304\n\n"
## 
## attr(,"class")
## [1] "display" "list"

GEE Table: from geeglm object from geepack package

library(geepack)  ## for dietox data
data(dietox)
dietox$Cu <- as.factor(dietox$Cu)
dietox$ddn <- as.numeric(rnorm(nrow(dietox)) > 0)
gee01 <- geeglm (Weight ~ Time + Cu , id = Pig, data = dietox, family = gaussian, corstr = "ex")
geeglm.display(gee01)
## $caption
## [1] "GEE(gaussian) predicting Weight by Time, Cu - Group Pig"
## 
## $table
##                crude coeff(95%CI)   crude P value adj. coeff(95%CI)  
## Time           "6.94 (6.79,7.1)"    "< 0.001"     "6.94 (6.79,7.1)"  
## Cu: ref.=Cu000 NA                   NA            NA                 
##       035      "-0.59 (-3.73,2.54)" "0.711"       "-0.84 (-3.9,2.23)"
##       175      "1.9 (-1.87,5.66)"   "0.324"       "1.77 (-1.9,5.45)" 
##                adj. P value
## Time           "< 0.001"   
## Cu: ref.=Cu000 NA          
##       035      "0.593"     
##       175      "0.345"     
## 
## $metric
##                                  crude coeff(95%CI) crude P value
##                                  NA                 NA           
## Estimated correlation parameters "0.775"            NA           
## No. of clusters                  "72"               NA           
## No. of observations              "861"              NA           
##                                  adj. coeff(95%CI) adj. P value
##                                  NA                NA          
## Estimated correlation parameters NA                NA          
## No. of clusters                  NA                NA          
## No. of observations              NA                NA
gee02 <- geeglm (ddn ~ Time + Cu , id = Pig, data = dietox, family = binomial, corstr = "ex")
geeglm.display(gee02)
## $caption
## [1] "GEE(binomial) predicting ddn by Time, Cu - Group Pig"
## 
## $table
##                crude OR(95%CI)    crude P value adj. OR(95%CI)     adj. P value
## Time           "0.99 (0.96,1.03)" "0.729"       "0.99 (0.96,1.03)" "0.727"     
## Cu: ref.=Cu000 NA                 NA            NA                 NA          
##       035      "1.2 (0.81,1.78)"  "0.364"       "1.2 (0.81,1.78)"  "0.364"     
##       175      "1.03 (0.71,1.48)" "0.889"       "1.03 (0.71,1.48)" "0.889"     
## 
## $metric
##                                  crude OR(95%CI) crude P value adj. OR(95%CI)
##                                  NA              NA            NA            
## Estimated correlation parameters "0.031"         NA            NA            
## No. of clusters                  "72"            NA            NA            
## No. of observations              "861"           NA            NA            
##                                  adj. P value
##                                  NA          
## Estimated correlation parameters NA          
## No. of clusters                  NA          
## No. of observations              NA

Mixed model Table: lmerMod or glmerMod object from lme4 package

library(lme4)
l1 <- lmer(Weight ~ Time + Cu + (1|Pig), data = dietox) 
lmer.display(l1, ci.ranef = T)
## $table
##                      crude coeff(95%CI) crude P value adj. coeff(95%CI)
## Time                   6.94 (6.88,7.01)     0.0000000  6.94 (6.88,7.01)
## Cu: ref.=Cu000                     <NA>            NA              <NA>
##       035            -0.58 (-4.67,3.51)     0.7811327 -0.84 (-4.47,2.8)
##       175              1.9 (-2.23,6.04)     0.3670740  1.77 (-1.9,5.45)
## Random effects                     <NA>            NA              <NA>
## Pig                 40.34 (28.08,54.95)            NA              <NA>
## Residual             11.37 (10.3,12.55)            NA              <NA>
## Metrics                            <NA>            NA              <NA>
## No. of groups (Pig)                  72            NA              <NA>
## No. of observations                 861            NA              <NA>
## Log-likelihood                  -2400.8            NA              <NA>
## AIC value                        4801.6            NA              <NA>
##                     adj. P value
## Time                   0.0000000
## Cu: ref.=Cu000                NA
##       035              0.6527264
##       175              0.3442309
## Random effects                NA
## Pig                           NA
## Residual                      NA
## Metrics                       NA
## No. of groups (Pig)           NA
## No. of observations           NA
## Log-likelihood                NA
## AIC value                     NA
## 
## $caption
## [1] "Linear mixed model fit by REML : Weight ~ Time + Cu + (1 | Pig)"
l2 <- glmer(ddn ~ Weight + Time + (1|Pig), data= dietox, family= "binomial")
lmer.display(l2)
## $table
##                      crude OR(95%CI) crude P value   adj. OR(95%CI)
## Weight                    1 (0.99,1)     0.5477787 0.99 (0.97,1.01)
## Time                0.99 (0.96,1.03)     0.7532531 1.09 (0.93,1.27)
## Random effects                  <NA>            NA             <NA>
## Pig                             0.11            NA             <NA>
## Metrics                         <NA>            NA             <NA>
## No. of groups (Pig)               72            NA             <NA>
## No. of observations              861            NA             <NA>
## Log-likelihood               -594.08            NA             <NA>
## AIC value                    1196.16            NA             <NA>
##                     adj. P value
## Weight                 0.2256157
## Time                   0.2754273
## Random effects                NA
## Pig                           NA
## Metrics                       NA
## No. of groups (Pig)           NA
## No. of observations           NA
## Log-likelihood                NA
## AIC value                     NA
## 
## $caption
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) : ddn ~ Weight + Time + (1 | Pig)"

Cox model with frailty or cluster options

library(survival)
fit1 <- coxph(Surv(time, status) ~ ph.ecog + age, cluster = inst, lung, model = T)  ## model = T: to extract original data
fit2 <- coxph(Surv(time, status) ~ ph.ecog + age + frailty(inst), lung, model = T)
cox2.display(fit1)
## $table
##         crude HR(95%CI)    crude P value adj. HR(95%CI)  adj. P value
## ph.ecog "1.61 (1.25,2.08)" "< 0.001"     "1.56 (1.22,2)" "< 0.001"   
## age     "1.02 (1.01,1.03)" "0.007"       "1.01 (1,1.02)" "0.085"     
## 
## $ranef
##         [,1] [,2] [,3] [,4]
## cluster   NA   NA   NA   NA
## inst      NA   NA   NA   NA
## 
## $metric
##                     [,1] [,2] [,3] [,4]
## <NA>                  NA   NA   NA   NA
## No. of observations  226   NA   NA   NA
## No. of events        163   NA   NA   NA
## 
## $caption
## [1] "Marginal Cox model on time ('time') to event ('status') - Group inst"
cox2.display(fit2)
## $table
##         crude HR(95%CI)    crude P value adj. HR(95%CI)     adj. P value
## ph.ecog "1.64 (1.31,2.05)" "< 0.001"     "1.58 (1.26,1.99)" "< 0.001"   
## age     "1.02 (1,1.04)"    "0.041"       "1.01 (0.99,1.03)" "0.225"     
## 
## $ranef
##         [,1] [,2] [,3] [,4]
## frailty   NA   NA   NA   NA
## inst      NA   NA   NA   NA
## 
## $metric
##                     [,1] [,2] [,3] [,4]
## <NA>                  NA   NA   NA   NA
## No. of observations  226   NA   NA   NA
## No. of events        163   NA   NA   NA
## 
## $caption
## [1] "Frailty Cox model on time ('time') to event ('status') - Group inst"

Cox mixed effect model Table: coxme object from coxme package

library(coxme)
fit <- coxme(Surv(time, status) ~ ph.ecog + age + (1|inst), lung)
coxme.display(fit) 
## $table
##         crude HR(95%CI)    crude P value adj. HR(95%CI)     adj. P value
## ph.ecog "1.66 (1.32,2.09)" "< 0.001"     "1.61 (1.27,2.03)" "< 0.001"   
## age     "1.02 (1,1.04)"    "0.043"       "1.01 (0.99,1.03)" "0.227"     
## 
## $ranef
##                 [,1] [,2] [,3] [,4]
## Random effect     NA   NA   NA   NA
## inst(Intercept) 0.02   NA   NA   NA
## 
## $metric
##                     [,1] [,2] [,3] [,4]
## <NA>                  NA   NA   NA   NA
## No. of groups(inst)   18   NA   NA   NA
## No. of observations  226   NA   NA   NA
## No. of events        163   NA   NA   NA
## 
## $caption
## [1] "Mixed effects Cox model on time ('time') to event ('status') - Group inst"

GLM for survey data : svyglm object from survey package

library(survey)
data(api)
apistrat$tt <- c(rep(1, 20), rep(0, nrow(apistrat) -20))
apistrat$tt2 <- factor(c(rep(0, 40), rep(1, nrow(apistrat) -40)))

dstrat <-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
ds <- svyglm(api00~ell+meals+mobility + tt2, design=dstrat)
ds2 <- svyglm(tt~ell+meals+mobility + tt2, design=dstrat, family = quasibinomial())
svyregress.display(ds)
## $first.line
## [1] "Linear regression predicting api00- weighted data\n"
## 
## $table
##             crude coeff.(95%CI)    crude P value adj. coeff.(95%CI)   
## ell         "-3.73 (-4.35,-3.11)"  "< 0.001"     "-0.48 (-1.25,0.29)" 
## meals       "-3.38 (-3.71,-3.05)"  "< 0.001"     "-3.14 (-3.69,-2.59)"
## mobility    "-1.43 (-3.3,0.44)"    "0.137"       "0.22 (-0.55,0.99)"  
## tt2: 1 vs 0 "10.98 (-34.16,56.12)" "0.634"       "6.13 (-17.89,30.15)"
##             adj. P value
## ell         "0.222"     
## meals       "< 0.001"   
## mobility    "0.573"     
## tt2: 1 vs 0 "0.618"     
## 
## $last.lines
## [1] "No. of observations = 200\nAIC value = 2309.8282\n\n"
## 
## attr(,"class")
## [1] "display" "list"
svyregress.display(ds2)
## $first.line
## [1] "Logistic regression predicting tt- weighted data\n"
## 
## $table
##             crude OR.(95%CI)   crude P value adj. OR.(95%CI)    adj. P value
## ell         "1.02 (1,1.05)"    "0.047"       "1.11 (1.03,1.21)" "0.009"     
## meals       "1.01 (0.99,1.03)" "0.255"       "0.95 (0.91,1)"    "0.068"     
## mobility    "1.01 (0.98,1.03)" "0.506"       "1.1 (0.98,1.23)"  "0.114"     
## tt2: 1 vs 0 "0 (0,0)"          "< 0.001"     "0 (0,0)"          "< 0.001"   
## 
## $last.lines
## [1] "No. of observations = 200\n\n"
## 
## attr(,"class")
## [1] "display" "list"

Cox model for survey data :svycoxph object from survey package

data(pbc, package="survival")
pbc$sex <- factor(pbc$sex)
pbc$stage <- factor(pbc$stage)
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel <- glm(randomized~age*edema,data=pbc,family=binomial)
pbc$randprob <- fitted(biasmodel)

if (is.null(pbc$albumin)) pbc$albumin <- pbc$alb ##pre2.9.0

dpbc <- svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))

model <- svycoxph(Surv(time,status>0)~ sex + protime + albumin + stage,design=dpbc)
svycox.display(model)
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))

## $table
##               crude HR(95%CI)      crude P value adj. HR(95%CI)       
## sex: f vs m   "0.62 (0.4,0.97)"    "0.038"       "0.55 (0.33,0.9)"    
## protime       "1.37 (1.09,1.72)"   "0.006"       "1.52 (1.2,1.91)"    
## albumin       "0.2 (0.14,0.29)"    "< 0.001"     "0.31 (0.2,0.47)"    
## stage: ref.=1 NA                   NA            NA                   
##    2          "5.67 (0.77,41.78)"  "0.089"       "10.94 (1.01,118.55)"
##    3          "9.78 (1.37,69.94)"  "0.023"       "17.03 (1.69,171.6)" 
##    4          "22.89 (3.2,163.48)" "0.002"       "22.56 (2.25,226.42)"
##               adj. P value
## sex: f vs m   "0.017"     
## protime       "< 0.001"   
## albumin       "< 0.001"   
## stage: ref.=1 NA          
##    2          "0.049"     
##    3          "0.016"     
##    4          "0.008"     
## 
## $metric
##                        [,1] [,2] [,3] [,4]
## <NA>                     NA   NA   NA   NA
## No. of observations  312.00   NA   NA   NA
## No. of events        144.00   NA   NA   NA
## AIC                 1480.29   NA   NA   NA
## 
## $caption
## [1] "Survey cox model on time ('time') to event ('status > 0')"

Sub-group analysis for Cox/svycox model

library(dplyr)
lung %>% 
  mutate(status = as.integer(status == 1),
         sex = factor(sex),
         kk = factor(as.integer(pat.karno >= 70)),
         kk1 = factor(as.integer(pat.karno >= 60))) -> lung

TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = lung, line = TRUE)
##   Variable Count Percent Point Estimate Lower Upper    1    2 P value
## 1  Overall   228     100           1.91  1.14   3.2  100  100   0.014
## 2     <NA>  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 3       kk  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 4        0    38    16.9           2.88  0.31 26.49   10  100    0.35
## 5        1   187    83.1           1.84  1.08  3.14  100  100   0.026
## 6     <NA>  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 7      kk1  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 8        0     8     3.6           <NA>  <NA>  <NA>    0  100    <NA>
## 9        1   217    96.4           1.88  1.12  3.17  100  100   0.018
##   P for interaction
## 1              <NA>
## 2              <NA>
## 3             0.525
## 4              <NA>
## 5              <NA>
## 6              <NA>
## 7             0.997
## 8              <NA>
## 9              <NA>
## Survey data
library(survey)
data.design <- svydesign(id = ~1, data = lung)
TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = data.design, line = FALSE)
## Independent Sampling design (with replacement)
## svydesign(id = ~1, data = lung)
## Independent Sampling design (with replacement)
## svydesign(id = ~1, data = lung)
## Independent Sampling design (with replacement)
## subset(data, get(var_subgroup) == .)
## Independent Sampling design (with replacement)
## subset(data, get(var_subgroup) == .)
## Independent Sampling design (with replacement)
## svydesign(id = ~1, data = lung)
## Independent Sampling design (with replacement)
## subset(data, get(var_subgroup) == .)

##   Variable Count Percent Point Estimate Lower Upper    1    2 P value
## 1  Overall   228     100           1.91  1.14  3.19  100  100   0.013
## 2       kk  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 3        0    38    16.9           2.88  0.31  27.1   10  100   0.355
## 4        1   187    83.1           1.84  1.08  3.11  100  100   0.024
## 5      kk1  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 6        0  <NA>    <NA>           <NA>  <NA>  <NA>    0  100    <NA>
## 7        1   217    <NA>           1.88  1.12  3.15  100  100   0.017
##   P for interaction
## 1              <NA>
## 2             0.523
## 3              <NA>
## 4              <NA>
## 5            <0.001
## 6              <NA>
## 7              <NA>

Sub-group analysis for GLM

TableSubgroupMultiGLM(status ~ sex, var_subgroups = c("kk", "kk1"), data = lung, family = "binomial")
##   Variable Count Percent           OR Lower  Upper P value P for interaction
## 1  Overall   228     100         3.01  1.66   5.52  <0.001              <NA>
## 2       kk  <NA>    <NA>         <NA>  <NA>   <NA>    <NA>             0.476
## 3        0    38    16.9            7  0.91 145.62   0.098              <NA>
## 4        1   187    83.1         2.94  1.56   5.62   0.001              <NA>
## 5      kk1  <NA>    <NA>         <NA>  <NA>   <NA>    <NA>             0.984
## 6        0     8     3.6 314366015.19     0   <NA>   0.997              <NA>
## 7        1   217    96.4         2.85  1.56   5.29   0.001              <NA>
## Survey data
TableSubgroupMultiGLM(pat.karno ~ sex, var_subgroups = c("kk", "kk1"), data = data.design, family = "gaussian", line = TRUE)
##   Variable Count Percent Point.Estimate  Lower Upper P value P for interaction
## 1  Overall   225     100           1.37  -2.58  5.33   0.496              <NA>
## 2     <NA>  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>              <NA>
## 3       kk  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>             0.231
## 4        0    38    16.9          -1.19   -6.5  4.11   0.662              <NA>
## 5        1   187    83.1           2.53  -0.42  5.47   0.094              <NA>
## 6     <NA>  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>              <NA>
## 7      kk1  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>             0.738
## 8        0     8     3.6              0 -11.52 11.52       1              <NA>
## 9        1   217    96.4           2.06  -1.43  5.55   0.249              <NA>

Copy Link

Version

Install

install.packages('jstable')

Monthly Downloads

2,304

Version

1.3.8

License

Apache License 2.0

Issues

Pull Requests

Stars

Forks

Maintainer

Jinseob Kim

Last Published

December 11th, 2024

Functions in jstable (1.3.8)

coxExp

coxExp: transform the unit of coefficients in cox model(internal function)
TableSubgroupMultiGLM

TableSubgroupMultiGLM: Multiple sub-group analysis table for GLM.
coxme.display

coxme.display: table for coxme.object (coxme package)
geeExp

geeExp: transform the unit of coefficients (internal function)
geeUni

geeUni: The coefficient of univariate gee (internal function)
coefNA

coefNA: make coefficient table with NA
glmshow.display

glmshow.display: Show summary table of glm object.
geeglm.display

geeglm.display
opt.roc

datable option for ROC result(DT package)
extractAIC.coxme

extractAIC.coxme: Extract AIC from coxme.object
coxmeTable

coxmeTable: Summary table of coxme.object(internal function)
CreateTableOneJS

CreateTableOneJS: Modified CreateTableOne function in tableone package
count_event_by

count_event_by: funciton to count event, subgroup number inside TableSubgroupCox, TableSubgroupMultiCox
cox2.display

cox2.display: table for coxph.object with model option: TRUE - allow "frailty" or "cluster" model
lmer.display

lmer.display: table for "lmerMod" or "glmerMod" object (lme4 package)
lmerExp

lmerExp: transform the unit of coefficients (internal function)
svyCreateTableOne2

svyCreateTableOne2: Modified svyCreateTableOne function in tableone package
TableSubgroupGLM

TableSubgroupGLM: Sub-group analysis table for GLM and GLMM(lme4 package).
TableSubgroupMultiCox

TableSubgroupMultiCox: Multiple sub-group analysis table for Cox/svycox model.
svyCreateTableOneJS

svyCreateTableOneJS: Modified CreateTableOne function in tableone package
mort

DATASET_TITLE
opt.simpledown

datable option for simple download(DT package)
opt.tb1

datable option for table 1(DT package)
mk.lev

Export label and level: multiple variable
mk.lev.var

Export label and level: one variable
opt.data

datable option for data(DT package)
svycox.display

svycoxph.display: table for svycoxph.object in survey package.
opt.tbreg

datable option for regression table(DT package)
svyregress.display

svyregress.display: table for svyglm.object
LabeljsGeeglm

LabeljsGeeglm: Apply label information to geeglm.display object using label data
CreateTableOne2

CreateTableOne2: Modified CreateTableOne function in tableone package
LabeljsTable

LabeljsTable: Apply label information to jstable object using label data
LabelepiDisplay

LabelepiDisplay: Apply label information to epiDisplay object using label data
LabeljsCox

LabeljsCox: Apply label information to cox2.display object using label data
LabeljsMetric

LabeljsMetric: Apply label information to jstable metric object using label data
LabeljsMixed

LabeljsMixed: Apply label information to jstable object using label data
TableSubgroupCox

TableSubgroupCox: Sub-group analysis table for Cox/svycox model.
LabeljsRanef

LabeljsRanef: Apply label information to jstable random effect object using label data