# NOT RUN {
require(stats)
# Regression function:
m <- function(x, x1 = 0, x2 = 8, a = 0.01, b = 0) {
a * (x - x1) * (x - x2)^3 + b
}
# Note: For a few details on m() see examples in ?nadwat.
n <- 100 # Sample size.
set.seed(42) # To guarantee reproducibility.
X <- runif(n, min = -3, max = 15) # X_1, ..., X_n # Design.
Y <- m(X) + rnorm(length(X), sd = 5) # Y_1, ..., Y_n # Response.
h <- n^(-1/5)
Sigma <- seq(0.01, 10, length = 51) # sigma-grid for minimization.
x0 <- 5 # Location at which the estimator of m should be computed.
# Weights (W_{ni}(x; \sigma_r))_{1<=r<=length(Sigma), 1<=i<=n} for
# Var_n(sigma) and Bias_n(sigma) each at x0 on the sigma-grid:
weights_ES2012(sigma = Sigma, xXh = (x0 - X) / h,
thetaXh = (mean(X) - X) / h, K = dnorm, h = h)
# }
Run the code above in your browser using DataLab