Learn R Programming

kdensity (version 1.1.1)

plot.kdensity: Plot, Lines and Points Methods for Kernel Density Estimation

Description

The plot method for kdensity objects.

Usage

# S3 method for kdensity
plot(x, range = NULL, plot_start = FALSE, zero_line = TRUE, ...)

# S3 method for kdensity lines(x, range = NULL, plot_start = FALSE, zero_line = TRUE, ...)

# S3 method for kdensity points(x, range = NULL, plot_start = FALSE, zero_line = TRUE, ...)

Value

None.

Arguments

x

a kdensity object.

range

range of x values.

plot_start

logical; if TRUE, plots the parametric start instead of the kernel density estimate.

zero_line

logical; if TRUE, add a base line at y = 0.

...

further plotting parameters.

See Also

kdensity()

Examples

Run this code
## Using the data set "precip" to eye-ball the similarity between
## a kernel fit, a parametric fit, and a kernel with parametric start fit.
kde_gamma <- kdensity(precip, kernel = "gaussian", start = "gamma")
kde <- kdensity(precip, kernel = "gaussian", start = "uniform")

plot(kde_gamma, main = "Annual Precipitation in US Cities")
lines(kde_gamma, plot_start = TRUE, lty = 2)
lines(kde, lty = 3)
rug(precip)

Run the code above in your browser using DataLab