Learn R Programming

kdevine (version 0.4.5)

kdevinecop: Kernel estimation of vine copula densities

Description

The function estimates a vine copula density using kernel estimators for the pair copulas (based on the kdecopula package).

Usage

kdevinecop(
  data,
  matrix = NA,
  method = "TLL2",
  renorm.iter = 3L,
  mult = 1,
  test.level = NA,
  trunc.level = NA,
  treecrit = "tau",
  cores = 1,
  info = FALSE
)

Value

An object of class kdevinecop. That is, a list containing

T1, T2, ...

lists of the estimted pair copulas in each tree,

matrix

the structure matrix of the vine,

info

additional information about the fit (if info = TRUE).

Arguments

data

(\(n x d\)) matrix of copula data (have to lie in \([0,1^d]\)).

matrix

R-Vine matrix (\(n x d\)) specifying the structure of the vine; if NA (default) the structure selection heuristic of Dissman et al. (2013) is applied.

method

see kdecop.

renorm.iter

see kdecop.

mult

see kdecop.

test.level

significance level for independence test. If you provide a number in \([0, 1]\), an independence test (BiCopIndTest) will be performed for each pair; if the null hypothesis of independence cannot be rejected, the independence copula will be set for this pair. If test.level = NA (default), no independence test will be performed.

trunc.level

integer; the truncation level. All pair copulas in trees above the truncation level will be set to independence.

treecrit

criterion for structure selection; defaults to "tau".

cores

integer; if cores > 1, estimation will be parallized within each tree (using foreach).

info

logical; if TRUE, additional information about the estimate will be gathered (see kdecop).

References

Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas.
Journal of Multivariate Analysis 151, 69-89 (doi:10.1016/j.jmva.2016.07.003)

Nagler, T., Schellhase, C. and Czado, C. (2017)
Nonparametric estimation of simplified vine copula models: comparison of methods arXiv:1701.00845

Dissmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D. (2013).
Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59(0):52--69.

See Also

dkdevinecop, kdecop, BiCopIndTest, foreach

Examples

Run this code
data(wdbc, package = "kdecopula")
# rank-transform to copula data (margins are uniform)
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average")
u <- u[1:30, ]
fit <- kdevinecop(u)                   # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit)     # evaluate density estimate
contour(fit)                           # contour matrix (Gaussian scale)
pairs(rkdevinecop(500, fit))           # plot simulated data

Run the code above in your browser using DataLab