## create kernel object for normalized spectrum kernel
specK5 <- spectrumKernel(k=5)
## load data
data(TFBS)
## perform training - feature weights are computed by default
model <- kbsvm(enhancerFB, yFB, specK5, pkg="LiblineaR",
svm="C-svc", cross=10, cost=15, perfParameters="ALL")
## show model selection result
cvResult(model)
## extract fold AUC
performance(cvResult(model))$foldAUC
Run the code above in your browser using DataLab