Model performance metrics
metric_binary_accuracy(y_true, y_pred)metric_binary_crossentropy(y_true, y_pred)
metric_categorical_accuracy(y_true, y_pred)
metric_categorical_crossentropy(y_true, y_pred)
metric_cosine_proximity(y_true, y_pred)
metric_hinge(y_true, y_pred)
metric_kullback_leibler_divergence(y_true, y_pred)
metric_mean_absolute_error(y_true, y_pred)
metric_mean_absolute_percentage_error(y_true, y_pred)
metric_mean_squared_error(y_true, y_pred)
metric_mean_squared_logarithmic_error(y_true, y_pred)
metric_poisson(y_true, y_pred)
metric_sparse_categorical_crossentropy(y_true, y_pred)
metric_squared_hinge(y_true, y_pred)
metric_top_k_categorical_accuracy(y_true, y_pred, k = 5)
metric_sparse_top_k_categorical_accuracy(y_true, y_pred, k = 5)
True labels (tensor)
Predictions (tensor of the same shape as y_true).
An integer, number of top elements to consider.
You can provide an arbitrary R function as a custom metric. Note that
the y_true
and y_pred
parameters are tensors, so computations on
them should use backend tensor functions. For example:
# create metric using backend tensor functions K <- backend() metric_mean_pred <- function(y_true, y_pred) { K$mean(y_pred) }model optimizer = optimizer_rmsprop(), loss = loss_binary_crossentropy, metrics = c('accuracy', 'mean_pred' = metric_mean_pred) )
Note that a name ('mean_pred') is provided for the custom metric function. This name is used within training progress output.
Documentation on the available backend tensor functions can be found at https://rstudio.github.io/keras/articles/backend.html#backend-functions.