This layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known, use
layer_integer_lookup()
instead.
layer_category_encoding(
object,
num_tokens = NULL,
output_mode = "multi_hot",
sparse = FALSE,
...
)
What to compose the new Layer
instance with. Typically a
Sequential model or a Tensor (e.g., as returned by layer_input()
).
The return value depends on object
. If object
is:
missing or NULL
, the Layer
instance is returned.
a Sequential
model, the model with an additional layer is returned.
a Tensor, the output tensor from layer_instance(object)
is returned.
The total number of tokens the layer should support. All
inputs to the layer must integers in the range 0 <= value < num_tokens
,
or an error will be thrown.
Specification for the output of the layer. Defaults to
"multi_hot"
. Values can be "one_hot"
, "multi_hot"
or "count"
,
configuring the layer as follows:
"one_hot"
: Encodes each individual element in the input into an array
of num_tokens
size, containing a 1 at the element index. If the last
dimension is size 1, will encode on that dimension. If the last dimension
is not size 1, will append a new dimension for the encoded output.
"multi_hot"
: Encodes each sample in the input into a single array of
num_tokens
size, containing a 1 for each vocabulary term present in the
sample. Treats the last dimension as the sample dimension, if input shape
is (..., sample_length)
, output shape will be (..., num_tokens)
.
"count"
: Like "multi_hot"
, but the int array contains a count of the
number of times the token at that index appeared in the sample.
For all output modes, currently only output up to rank 2 is supported.
Boolean. If TRUE
, returns a SparseTensor
instead of a dense
Tensor
. Defaults to FALSE
.
standard layer arguments.
https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding
https://keras.io/api/layers/preprocessing_layers/categorical/category_encoding/
Other categorical features preprocessing layers:
layer_hashing()
,
layer_integer_lookup()
,
layer_string_lookup()
Other preprocessing layers:
layer_center_crop()
,
layer_discretization()
,
layer_hashing()
,
layer_integer_lookup()
,
layer_normalization()
,
layer_random_brightness()
,
layer_random_contrast()
,
layer_random_crop()
,
layer_random_flip()
,
layer_random_height()
,
layer_random_rotation()
,
layer_random_translation()
,
layer_random_width()
,
layer_random_zoom()
,
layer_rescaling()
,
layer_resizing()
,
layer_string_lookup()
,
layer_text_vectorization()