Global max pooling operation for spatial data.
layer_global_max_pooling_2d(object, data_format = NULL, keepdims = FALSE, ...)
What to compose the new Layer
instance with. Typically a
Sequential model or a Tensor (e.g., as returned by layer_input()
).
The return value depends on object
. If object
is:
missing or NULL
, the Layer
instance is returned.
a Sequential
model, the model with an additional layer is returned.
a Tensor, the output tensor from layer_instance(object)
is returned.
A string, one of channels_last
(default) or
channels_first
. The ordering of the dimensions in the inputs.
channels_last
corresponds to inputs with shape (batch, height, width, channels)
while channels_first
corresponds to inputs with shape (batch, channels, height, width)
. It defaults to the image_data_format
value
found in your Keras config file at ~/.keras/keras.json
. If you never set
it, then it will be "channels_last".
A boolean, whether to keep the spatial dimensions or not. If
keepdims
is FALSE
(default), the rank of the tensor is reduced for
spatial dimensions. If keepdims
is TRUE
, the spatial dimensions are
retained with length 1. The behavior is the same as for tf.reduce_mean
or
np.mean
.
standard layer arguments.
If data_format='channels_last'
: 4D tensor with shape: (batch_size, rows, cols, channels)
If data_format='channels_first'
: 4D tensor with shape: (batch_size, channels, rows, cols)
2D tensor with shape: (batch_size, channels)
Other pooling layers:
layer_average_pooling_1d()
,
layer_average_pooling_2d()
,
layer_average_pooling_3d()
,
layer_global_average_pooling_1d()
,
layer_global_average_pooling_2d()
,
layer_global_average_pooling_3d()
,
layer_global_max_pooling_1d()
,
layer_global_max_pooling_3d()
,
layer_max_pooling_1d()
,
layer_max_pooling_2d()
,
layer_max_pooling_3d()