Calculates how often predictions match integer labels
metric_sparse_categorical_accuracy(
y_true,
y_pred,
...,
name = "sparse_categorical_accuracy",
dtype = NULL
)
If y_true
and y_pred
are missing, a (subclassed) Metric
instance is returned. The Metric
object can be passed directly to
compile(metrics = )
or used as a standalone object. See ?Metric
for
example usage.
Alternatively, if called with y_true
and y_pred
arguments, then the
computed case-wise values for the mini-batch are returned directly.
Tensor of true targets.
Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compatibility.
(Optional) string name of the metric instance.
(Optional) data type of the metric result.
acc = k_dot(sample_weight, y_true == k_argmax(y_pred, axis=2))
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
This metric creates two local variables, total
and count
that are used to
compute the frequency with which y_pred
matches y_true
. This frequency is
ultimately returned as sparse categorical accuracy
: an idempotent operation
that simply divides total
by count
.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
Other metrics:
custom_metric()
,
metric_accuracy()
,
metric_auc()
,
metric_binary_accuracy()
,
metric_binary_crossentropy()
,
metric_categorical_accuracy()
,
metric_categorical_crossentropy()
,
metric_categorical_hinge()
,
metric_cosine_similarity()
,
metric_false_negatives()
,
metric_false_positives()
,
metric_hinge()
,
metric_kullback_leibler_divergence()
,
metric_logcosh_error()
,
metric_mean_absolute_error()
,
metric_mean_absolute_percentage_error()
,
metric_mean_iou()
,
metric_mean_relative_error()
,
metric_mean_squared_error()
,
metric_mean_squared_logarithmic_error()
,
metric_mean_tensor()
,
metric_mean_wrapper()
,
metric_mean()
,
metric_poisson()
,
metric_precision_at_recall()
,
metric_precision()
,
metric_recall_at_precision()
,
metric_recall()
,
metric_root_mean_squared_error()
,
metric_sensitivity_at_specificity()
,
metric_sparse_categorical_crossentropy()
,
metric_sparse_top_k_categorical_accuracy()
,
metric_specificity_at_sensitivity()
,
metric_squared_hinge()
,
metric_sum()
,
metric_top_k_categorical_accuracy()
,
metric_true_negatives()
,
metric_true_positives()