Optimizer that implements the Adadelta algorithm
optimizer_adadelta(
learning_rate = 0.001,
rho = 0.95,
epsilon = 1e-07,
weight_decay = NULL,
clipnorm = NULL,
clipvalue = NULL,
global_clipnorm = NULL,
use_ema = FALSE,
ema_momentum = 0.99,
ema_overwrite_frequency = NULL,
jit_compile = TRUE,
name = "Adadelta",
...
)
Optimizer for use with compile.keras.engine.training.Model
.
Initial value for the learning rate:
either a floating point value,
or a tf.keras.optimizers.schedules.LearningRateSchedule
instance.
Defaults to 0.001.
Note that Adadelta
tends to benefit from higher initial learning rate
values compared to other optimizers.
To match the exact form in the original paper, use 1.0.
A Tensor
or a floating point value. The decay rate. Defaults to
0.95.
Small floating point value used to maintain numerical stability. Defaults to 1e-7.
Float, defaults to NULL. If set, weight decay is applied.
Float. If set, the gradient of each weight is individually clipped so that its norm is no higher than this value.
Float. If set, the gradient of each weight is clipped to be no higher than this value.
Float. If set, the gradient of all weights is clipped so that their global norm is no higher than this value.
Boolean, defaults to FALSE. If TRUE, exponential moving average (EMA) is applied. EMA consists of computing an exponential moving average of the weights of the model (as the weight values change after each training batch), and periodically overwriting the weights with their moving average.
Float, defaults to 0.99. Only used if use_ema=TRUE
. This is # noqa: E501
the momentum to use when computing the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) * current_variable_value
.
Int or NULL, defaults to NULL. Only used if
use_ema=TRUE
. Every ema_overwrite_frequency
steps of iterations, we
overwrite the model variable by its moving average. If NULL, the optimizer # noqa: E501
does not overwrite model variables in the middle of training, and you
need to explicitly overwrite the variables at the end of training
by calling optimizer.finalize_variable_values()
(which updates the model # noqa: E501
variables in-place). When using the built-in fit()
training loop, this
happens automatically after the last epoch, and you don't need to do
anything.
Boolean, defaults to TRUE. If TRUE, the optimizer will use XLA # noqa: E501 compilation. If no GPU device is found, this flag will be ignored.
String. The name to use for momentum accumulator weights created by the optimizer.
Used for backward and forward compatibility
Adadelta optimization is a stochastic gradient descent method that is based on adaptive learning rate per dimension to address two drawbacks:
The continual decay of learning rates throughout training.
The need for a manually selected global learning rate.
Adadelta is a more robust extension of Adagrad that adapts learning rates based on a moving window of gradient updates, instead of accumulating all past gradients. This way, Adadelta continues learning even when many updates have been done. Compared to Adagrad, in the original version of Adadelta you don't have to set an initial learning rate. In this version, the initial learning rate can be set, as in most other Keras optimizers.
Other optimizers:
optimizer_adagrad()
,
optimizer_adamax()
,
optimizer_adam()
,
optimizer_ftrl()
,
optimizer_nadam()
,
optimizer_rmsprop()
,
optimizer_sgd()