Single gradient update or model evaluation over one batch of samples.
train_on_batch(object, x, y, class_weight = NULL, sample_weight = NULL)test_on_batch(object, x, y, sample_weight = NULL)
Scalar training or test loss (if the model has no metrics) or list of scalars
(if the model computes other metrics). The property model$metrics_names
will give you the display labels for the scalar outputs.
Keras model object
input data, as an array or list of arrays (if the model has multiple inputs).
labels, as an array.
named list mapping classes to a weight value, used for scaling the loss function (during training only).
sample weights, as an array.
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model_sequential()
,
keras_model()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
predict_proba()
,
summary.keras.engine.training.Model()