Allows a small gradient when the unit is not active: f(x) = alpha * x
for
x < 0
, f(x) = x
for x >= 0
.
layer_activation_leaky_relu(
object,
alpha = 0.3,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL
)
Model or layer object
float >= 0. Negative slope coefficient.
Input shape (list of integers, does not include the samples axis) which is required when using this layer as the first layer in a model.
Shapes, including the batch size. For instance,
batch_input_shape=c(10, 32)
indicates that the expected input will be
batches of 10 32-dimensional vectors. batch_input_shape=list(NULL, 32)
indicates batches of an arbitrary number of 32-dimensional vectors.
Fixed batch size for layer
The data type expected by the input, as a string (float32
,
float64
, int32
...)
An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.
Whether the layer weights will be updated during training.
Initial weights for layer.
Rectifier Nonlinearities Improve Neural Network Acoustic Models.
Other activation layers:
layer_activation_elu()
,
layer_activation_parametric_relu()
,
layer_activation_relu()
,
layer_activation_selu()
,
layer_activation_softmax()
,
layer_activation_thresholded_relu()
,
layer_activation()