Learn R Programming

keras (version 2.8.0)

application_resnet: Instantiates the ResNet architecture

Description

Instantiates the ResNet architecture

Usage

application_resnet50(
  include_top = TRUE,
  weights = "imagenet",
  input_tensor = NULL,
  input_shape = NULL,
  pooling = NULL,
  classes = 1000,
  ...
)

application_resnet101( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000, ... )

application_resnet152( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000, ... )

application_resnet50_v2( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000, classifier_activation = "softmax", ... )

application_resnet101_v2( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000, classifier_activation = "softmax", ... )

application_resnet152_v2( include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000, classifier_activation = "softmax", ... )

resnet_preprocess_input(x)

resnet_v2_preprocess_input(x)

Arguments

include_top

Whether to include the fully-connected layer at the top of the network. Defaults to TRUE.

weights

One of NULL (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. Defaults to 'imagenet'.

input_tensor

Optional Keras tensor (i.e. output of layer_input()) to use as image input for the model.

input_shape

optional shape list, only to be specified if include_top is FALSE (otherwise the input shape has to be c(224, 224, 3) (with 'channels_last' data format) or c(3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. c(200, 200, 3) would be one valid value.

pooling

Optional pooling mode for feature extraction when include_top is FALSE. Defaults to NULL.

  • NULL means that the output of the model will be the 4D tensor output of the last convolutional layer.

  • 'avg' means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor.

  • 'max' means that global max pooling will be applied.

classes

Optional number of classes to classify images into, only to be specified if include_top is TRUE, and if no weights argument is specified. Defaults to 1000 (number of ImageNet classes).

...

For backwards and forwards compatibility

classifier_activation

A string or callable. The activation function to use on the "top" layer. Ignored unless include_top = TRUE. Set classifier_activation = NULL to return the logits of the "top" layer. Defaults to 'softmax'. When loading pretrained weights, classifier_activation can only be NULL or "softmax".

x

preprocess_input() takes an array or floating point tensor, 3D or 4D with 3 color channels, with values in the range [0, 255].

Details

Reference:

For image classification use cases, see this page for detailed examples.

For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

Note: each Keras Application expects a specific kind of input preprocessing. For ResNet, call tf.keras.applications.resnet.preprocess_input on your inputs before passing them to the model. resnet.preprocess_input will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling.

See Also

Examples

Run this code
# NOT RUN {
library(keras)

# instantiate the model
model <- application_resnet50(weights = 'imagenet')

# load the image
img_path <- "elephant.jpg"
img <- image_load(img_path, target_size = c(224,224))
x <- image_to_array(img)

# ensure we have a 4d tensor with single element in the batch dimension,
# the preprocess the input for prediction using resnet50
x <- array_reshape(x, c(1, dim(x)))
x <- imagenet_preprocess_input(x)

# make predictions then decode and print them
preds <- model %>% predict(x)
imagenet_decode_predictions(preds, top = 3)[[1]]
# }

Run the code above in your browser using DataLab