Learn R Programming

keras (version 2.8.0)

layer_random_rotation: Randomly rotate each image

Description

Randomly rotate each image

Usage

layer_random_rotation(
  object,
  factor,
  fill_mode = "reflect",
  interpolation = "bilinear",
  seed = NULL,
  fill_value = 0,
  ...
)

Arguments

object

What to compose the new Layer instance with. Typically a Sequential model or a Tensor (e.g., as returned by layer_input()). The return value depends on object. If object is:

  • missing or NULL, the Layer instance is returned.

  • a Sequential model, the model with an additional layer is returned.

  • a Tensor, the output tensor from layer_instance(object) is returned.

factor

a float represented as fraction of 2 Pi, or a list of size 2 representing lower and upper bound for rotating clockwise and counter-clockwise. A positive values means rotating counter clock-wise, while a negative value means clock-wise. When represented as a single float, this value is used for both the upper and lower bound. For instance, factor = c(-0.2, 0.3) results in an output rotation by a random amount in the range [-20% * 2pi, 30% * 2pi]. factor = 0.2 results in an output rotating by a random amount in the range [-20% * 2pi, 20% * 2pi].

fill_mode

Points outside the boundaries of the input are filled according to the given mode (one of {"constant", "reflect", "wrap", "nearest"}).

  • reflect: (d c b a | a b c d | d c b a) The input is extended by reflecting about the edge of the last pixel.

  • constant: (k k k k | a b c d | k k k k) The input is extended by filling all values beyond the edge with the same constant value k = 0.

  • wrap: (a b c d | a b c d | a b c d) The input is extended by wrapping around to the opposite edge.

  • nearest: (a a a a | a b c d | d d d d) The input is extended by the nearest pixel.

interpolation

Interpolation mode. Supported values: "nearest", "bilinear".

seed

Integer. Used to create a random seed.

fill_value

a float represents the value to be filled outside the boundaries when fill_mode="constant".

...

standard layer arguments.

Details

By default, random rotations are only applied during training. At inference time, the layer does nothing. If you need to apply random rotations at inference time, set training to TRUE when calling the layer.

Input shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in "channels_last" format

Output shape: 3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in "channels_last" format

See Also

Other image augmentation layers: layer_random_contrast(), layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_translation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(), layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_contrast(), layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_translation(), layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(), layer_text_vectorization()