Learn R Programming

keras (version 2.8.0)

metric_accuracy: Calculates how often predictions equal labels

Description

Calculates how often predictions equal labels

Usage

metric_accuracy(..., name = NULL, dtype = NULL)

Arguments

...

Passed on to the underlying metric. Used for forwards and backwards compatibility.

name

(Optional) string name of the metric instance.

dtype

(Optional) data type of the metric result.

Value

A (subclassed) Metric instance that can be passed directly to compile(metrics = ), or used as a standalone object. See ?Metric for example usage.

Details

This metric creates two local variables, total and count that are used to compute the frequency with which y_pred matches y_true. This frequency is ultimately returned as binary accuracy: an idempotent operation that simply divides total by count.

If sample_weight is NULL, weights default to 1. Use sample_weight of 0 to mask values.

See Also

Other metrics: custom_metric(), metric_auc(), metric_binary_accuracy(), metric_binary_crossentropy(), metric_categorical_accuracy(), metric_categorical_crossentropy(), metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(), metric_false_positives(), metric_hinge(), metric_kullback_leibler_divergence(), metric_logcosh_error(), metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(), metric_mean_relative_error(), metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(), metric_mean_wrapper(), metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(), metric_recall_at_precision(), metric_recall(), metric_root_mean_squared_error(), metric_sensitivity_at_specificity(), metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(), metric_sparse_top_k_categorical_accuracy(), metric_specificity_at_sensitivity(), metric_squared_hinge(), metric_sum(), metric_top_k_categorical_accuracy(), metric_true_negatives(), metric_true_positives()