Learn R Programming

keras (version 2.8.0)

metric_categorical_accuracy: Calculates how often predictions match one-hot labels

Description

Calculates how often predictions match one-hot labels

Usage

metric_categorical_accuracy(
  y_true,
  y_pred,
  ...,
  name = "categorical_accuracy",
  dtype = NULL
)

Arguments

y_true

Tensor of true targets.

y_pred

Tensor of predicted targets.

...

Passed on to the underlying metric. Used for forwards and backwards compatibility.

name

(Optional) string name of the metric instance.

dtype

(Optional) data type of the metric result.

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object can be passed directly to compile(metrics = ) or used as a standalone object. See ?Metric for example usage.

Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for the mini-batch are returned directly.

Details

You can provide logits of classes as y_pred, since argmax of logits and probabilities are same.

This metric creates two local variables, total and count that are used to compute the frequency with which y_pred matches y_true. This frequency is ultimately returned as categorical accuracy: an idempotent operation that simply divides total by count.

y_pred and y_true should be passed in as vectors of probabilities, rather than as labels. If necessary, use tf.one_hot to expand y_true as a vector.

If sample_weight is NULL, weights default to 1. Use sample_weight of 0 to mask values.

See Also

Other metrics: custom_metric(), metric_accuracy(), metric_auc(), metric_binary_accuracy(), metric_binary_crossentropy(), metric_categorical_crossentropy(), metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(), metric_false_positives(), metric_hinge(), metric_kullback_leibler_divergence(), metric_logcosh_error(), metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(), metric_mean_relative_error(), metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(), metric_mean_wrapper(), metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(), metric_recall_at_precision(), metric_recall(), metric_root_mean_squared_error(), metric_sensitivity_at_specificity(), metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(), metric_sparse_top_k_categorical_accuracy(), metric_specificity_at_sensitivity(), metric_squared_hinge(), metric_sum(), metric_top_k_categorical_accuracy(), metric_true_negatives(), metric_true_positives()