Learn R Programming

keras (version 2.9.0)

k_local_conv2d: Apply 2D conv with un-shared weights.

Description

Apply 2D conv with un-shared weights.

Usage

k_local_conv2d(
  inputs,
  kernel,
  kernel_size,
  strides,
  output_shape,
  data_format = NULL
)

Value

A 4d tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'.

Arguments

inputs

4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'.

kernel

the unshared weight for convolution, with shape (output_items, feature_dim, filters)

kernel_size

a list of 2 integers, specifying the width and height of the 2D convolution window.

strides

a list of 2 integers, specifying the strides of the convolution along the width and height.

output_shape

a list with (output_row, output_col)

data_format

the data format, channels_first or channels_last

Keras Backend

This function is part of a set of Keras backend functions that enable lower level access to the core operations of the backend tensor engine (e.g. TensorFlow, CNTK, Theano, etc.).

You can see a list of all available backend functions here: https://keras.rstudio.com/articles/backend.html#backend-functions.