Learn R Programming

keras3 (version 1.3.0)

activation_silu: Swish (or Silu) activation function.

Description

It is defined as: swish(x) = x * sigmoid(x).

The Swish (or Silu) activation function is a smooth, non-monotonic function that is unbounded above and bounded below.

Usage

activation_silu(x)

Value

A tensor, the result from applying the activation to the input tensor x.

Arguments

x

Input tensor.

See Also

Other activations:
activation_celu()
activation_elu()
activation_exponential()
activation_gelu()
activation_glu()
activation_hard_shrink()
activation_hard_sigmoid()
activation_hard_tanh()
activation_leaky_relu()
activation_linear()
activation_log_sigmoid()
activation_log_softmax()
activation_mish()
activation_relu()
activation_relu6()
activation_selu()
activation_sigmoid()
activation_soft_shrink()
activation_softmax()
activation_softplus()
activation_softsign()
activation_sparse_plus()
activation_sparsemax()
activation_squareplus()
activation_tanh()
activation_tanh_shrink()
activation_threshold()