Learn R Programming

keras3 (version 1.3.0)

keras_model: Keras Model (Functional API)

Description

A model is a directed acyclic graph of layers.

Usage

keras_model(inputs = NULL, outputs = NULL, ...)

Value

A Model instance.

Arguments

inputs

Input tensor(s) (from keras_input())

outputs

Output tensors (from calling layers with inputs)

...

Any additional arguments

Examples

library(keras3)

# input tensor inputs <- keras_input(shape = c(784))

# outputs compose input + dense layers predictions <- inputs |> layer_dense(units = 64, activation = 'relu') |> layer_dense(units = 64, activation = 'relu') |> layer_dense(units = 10, activation = 'softmax')

# create and compile model model <- keras_model(inputs = inputs, outputs = predictions) model |> compile( optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = c('accuracy') )

See Also

Other model functions:
get_config()
get_layer()
get_state_tree()
keras_model_sequential()
pop_layer()
set_state_tree()
summary.keras.src.models.model.Model()

Other model creation:
keras_input()
keras_model_sequential()