Bidirectional wrapper for RNNs.
layer_bidirectional(
object,
layer,
merge_mode = "concat",
weights = NULL,
backward_layer = NULL,
...
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
RNN
instance, such as
layer_lstm()
or layer_gru()
.
It could also be a Layer()
instance
that meets the following criteria:
Be a sequence-processing layer (accepts 3D+ inputs).
Have a go_backwards
, return_sequences
and return_state
attribute (with the same semantics as for the RNN
class).
Have an input_spec
attribute.
Implement serialization via get_config()
and from_config()
.
Note that the recommended way to create new RNN layers is to write a
custom RNN cell and use it with layer_rnn()
, instead of
subclassing with Layer()
directly.
When return_sequences
is TRUE
, the output of the masked
timestep will be zero regardless of the layer's original
zero_output_for_mask
value.
Mode by which outputs of the forward and backward RNNs
will be combined. One of {"sum", "mul", "concat", "ave", NULL}
.
If NULL
, the outputs will not be combined,
they will be returned as a list. Defaults to "concat"
.
see description
Optional RNN
,
or Layer()
instance to be used to handle
backwards input processing.
If backward_layer
is not provided, the layer instance passed
as the layer
argument will be used to generate the backward layer
automatically.
Note that the provided backward_layer
layer should have properties
matching those of the layer
argument, in particular
it should have the same values for stateful
, return_states
,
return_sequences
, etc. In addition, backward_layer
and layer
should have different go_backwards
argument values.
A ValueError
will be raised if these requirements are not met.
For forward/backward compatability.
The call arguments for this layer are the same as those of the
wrapped RNN layer. Beware that when passing the initial_state
argument during the call of this layer, the first half in the
list of elements in the initial_state
list will be passed to
the forward RNN call and the last half in the list of elements
will be passed to the backward RNN call.
model <- keras_model_sequential(input_shape = c(5, 10)) %>%
layer_bidirectional(layer_lstm(units = 10, return_sequences = TRUE)) %>%
layer_bidirectional(layer_lstm(units = 10)) %>%
layer_dense(5, activation = "softmax")model %>% compile(loss = "categorical_crossentropy",
optimizer = "rmsprop")
# With custom backward layer
forward_layer <- layer_lstm(units = 10, return_sequences = TRUE)
backward_layer <- layer_lstm(units = 10, activation = "relu",
return_sequences = TRUE, go_backwards = TRUE)
model <- keras_model_sequential(input_shape = c(5, 10)) %>%
bidirectional(forward_layer, backward_layer = backward_layer) %>%
layer_dense(5, activation = "softmax")
model %>% compile(loss = "categorical_crossentropy",
optimizer = "rmsprop")
A Bidirectional
layer instance has property states
, which you can access
with layer$states
. You can also reset states using reset_state()
Other rnn layers:
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_rnn()
layer_simple_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()