This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
layer_discretization(
object,
bin_boundaries = NULL,
num_bins = NULL,
epsilon = 0.01,
output_mode = "int",
sparse = FALSE,
dtype = NULL,
name = NULL
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
A list of bin boundaries.
The leftmost and rightmost bins
will always extend to -Inf
and Inf
,
so bin_boundaries = c(0, 1, 2)
generates bins (-Inf, 0)
, [0, 1)
, [1, 2)
,
and [2, +Inf)
.
If this option is set, adapt()
should not be called.
The integer number of bins to compute.
If this option is set,
adapt()
should be called to learn the bin boundaries.
Error tolerance, typically a small fraction close to zero (e.g. 0.01). Higher values of epsilon increase the quantile approximation, and hence result in more unequal buckets, but could improve performance and resource consumption.
Specification for the output of the layer.
Values can be "int"
, "one_hot"
, "multi_hot"
, or
"count"
configuring the layer as follows:
"int"
: Return the discretized bin indices directly.
"one_hot"
: Encodes each individual element in the
input into an array the same size as num_bins
,
containing a 1 at the input's bin
index. If the last dimension is size 1, will encode on that
dimension. If the last dimension is not size 1,
will append a new dimension for the encoded output.
"multi_hot"
: Encodes each sample in the input into a
single array the same size as num_bins
,
containing a 1 for each bin index
index present in the sample.
Treats the last dimension as the sample
dimension, if input shape is (..., sample_length)
,
output shape will be (..., num_tokens)
.
"count"
: As "multi_hot"
, but the int array contains
a count of the number of times the bin index appeared
in the sample.
Defaults to "int"
.
Boolean. Only applicable to "one_hot"
, "multi_hot"
,
and "count"
output modes. Only supported with TensorFlow
backend. If TRUE
, returns a SparseTensor
instead of
a dense Tensor
. Defaults to FALSE
.
datatype (e.g., "float32"
).
String, name for the object
Any array of dimension 2 or higher.
Same as input shape.
Discretize float values based on provided buckets.
input <- op_array(rbind(c(-1.5, 1, 3.4, 0.5),
c(0, 3, 1.3, 0),
c(-.5, 0, .5, 1),
c(1.5, 2, 2.5, 3)))
output <- input |> layer_discretization(bin_boundaries = c(0, 1, 2))
output
## tf.Tensor(
## [[0 2 3 1]
## [1 3 2 1]
## [0 1 1 2]
## [2 3 3 3]], shape=(4, 4), dtype=int64)
Discretize float values based on a number of buckets to compute.
layer <- layer_discretization(num_bins = 4, epsilon = 0.01)
layer |> adapt(input)
layer(input)
## tf.Tensor(
## [[0 2 3 1]
## [1 3 2 1]
## [0 1 1 2]
## [2 3 3 3]], shape=(4, 4), dtype=int64)
Other numerical features preprocessing layers:
layer_normalization()
Other preprocessing layers:
layer_auto_contrast()
layer_category_encoding()
layer_center_crop()
layer_equalization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_max_num_bounding_boxes()
layer_mel_spectrogram()
layer_mix_up()
layer_normalization()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_solarization()
layer_stft_spectrogram()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()