e.g. rbind(4L, 20L)
\(\rightarrow\) rbind(c(0.25, 0.1), c(0.6, -0.2))
This layer can only be used on nonnegative integer inputs of a fixed range.
layer_embedding(
object,
input_dim,
output_dim,
embeddings_initializer = "uniform",
embeddings_regularizer = NULL,
embeddings_constraint = NULL,
mask_zero = FALSE,
weights = NULL,
lora_rank = NULL,
...
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
Integer. Size of the vocabulary, i.e. maximum integer index + 1.
Integer. Dimension of the dense embedding.
Initializer for the embeddings
matrix (see keras3::initializer_*
).
Regularizer function applied to
the embeddings
matrix (see keras3::regularizer_*
).
Constraint function applied to
the embeddings
matrix (see keras3::constraint_*
).
Boolean, whether or not the input value 0 is a special
"padding" value that should be masked out.
This is useful when using recurrent layers which
may take variable length input. If this is TRUE
,
then all subsequent layers in the model need
to support masking or an exception will be raised.
If mask_zero
is set to TRUE
, as a consequence,
index 0 cannot be used in the vocabulary (input_dim
should
equal size of vocabulary + 1).
Optional floating-point matrix of size
(input_dim, output_dim)
. The initial embeddings values
to use.
Optional integer. If set, the layer's forward pass
will implement LoRA (Low-Rank Adaptation)
with the provided rank. LoRA sets the layer's embeddings
matrix to non-trainable and replaces it with a delta over the
original matrix, obtained via multiplying two lower-rank
trainable matrices. This can be useful to reduce the
computation cost of fine-tuning large embedding layers.
You can also enable LoRA on an existing
Embedding
layer instance by calling layer$enable_lora(rank)
.
For forward/backward compatability.
model <- keras_model_sequential() |>
layer_embedding(1000, 64)# The model will take as input an integer matrix of size (batch,input_length),
# and the largest integer (i.e. word index) in the input
# should be no larger than 999 (vocabulary size).
# Now model$output_shape is (NA, 10, 64), where `NA` is the batch
# dimension.
input_array <- random_integer(shape = c(32, 10), minval = 0, maxval = 1000)
model |> compile('rmsprop', 'mse')
output_array <- model |> predict(input_array, verbose = 0)
dim(output_array) # (32, 10, 64)
## [1] 32 10 64
2D tensor with shape: (batch_size, input_length)
.
3D tensor with shape: (batch_size, input_length, output_dim)
.
enable_lora(
rank,
a_initializer = 'he_uniform',
b_initializer = 'zeros'
)
quantize(mode, type_check = TRUE)
quantized_build(input_shape, mode)
quantized_call(...)
embeddings
Other core layers:
layer_dense()
layer_einsum_dense()
layer_identity()
layer_lambda()
layer_masking()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()