Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation when using the TensorFlow backend.
The requirements to use the cuDNN implementation are:
activation
== tanh
recurrent_activation
== sigmoid
dropout
== 0 and recurrent_dropout
== 0
unroll
is FALSE
use_bias
is TRUE
reset_after
is TRUE
Inputs, if use masking, are strictly right-padded.
Eager execution is enabled in the outermost context.
There are two variants of the GRU implementation. The default one is based on v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for kernel
and
recurrent_kernel
. To use this variant, set reset_after=TRUE
and
recurrent_activation='sigmoid'
.
For example:
inputs <- random_uniform(c(32, 10, 8))
outputs <- inputs |> layer_gru(4)
shape(outputs)
## shape(32, 4)
# (32, 4)
gru <- layer_gru(, 4, return_sequences = TRUE, return_state = TRUE)
c(whole_sequence_output, final_state) %<-% gru(inputs)
shape(whole_sequence_output)
## shape(32, 10, 4)
shape(final_state)
## shape(32, 4)
layer_gru(
object,
units,
activation = "tanh",
recurrent_activation = "sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
seed = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
reset_after = TRUE,
use_cudnn = "auto",
...
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
Positive integer, dimensionality of the output space.
Activation function to use.
Default: hyperbolic tangent (tanh
).
If you pass NULL
, no activation is applied
(ie. "linear" activation: a(x) = x
).
Activation function to use
for the recurrent step.
Default: sigmoid (sigmoid
).
If you pass NULL
, no activation is applied
(ie. "linear" activation: a(x) = x
).
Boolean, (default TRUE
), whether the layer
should use a bias vector.
Initializer for the kernel
weights matrix,
used for the linear transformation of the inputs. Default:
"glorot_uniform"
.
Initializer for the recurrent_kernel
weights matrix, used for the linear transformation of the recurrent
state. Default: "orthogonal"
.
Initializer for the bias vector. Default: "zeros"
.
Regularizer function applied to the kernel
weights
matrix. Default: NULL
.
Regularizer function applied to the
recurrent_kernel
weights matrix. Default: NULL
.
Regularizer function applied to the bias vector.
Default: NULL
.
Regularizer function applied to the output of the
layer (its "activation"). Default: NULL
.
Constraint function applied to the kernel
weights
matrix. Default: NULL
.
Constraint function applied to the
recurrent_kernel
weights matrix. Default: NULL
.
Constraint function applied to the bias vector.
Default: NULL
.
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
Random seed for dropout.
Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: FALSE
.
Boolean. Whether to return the last state in addition
to the output. Default: FALSE
.
Boolean (default FALSE
).
If TRUE
, process the input sequence backwards and return the
reversed sequence.
Boolean (default: FALSE
). If TRUE
, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.
Boolean (default: FALSE
).
If TRUE
, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
GRU convention (whether to apply reset gate after or
before matrix multiplication). FALSE
is "before"
,
TRUE
is "after"
(default and cuDNN compatible).
Whether to use a cuDNN-backed implementation. "auto"
will
attempt to use cuDNN when feasible, and will fallback to the
default implementation if not.
For forward/backward compatability.
inputs
: A 3D tensor, with shape (batch, timesteps, feature)
.
mask
: Binary tensor of shape (samples, timesteps)
indicating whether
a given timestep should be masked (optional).
An individual TRUE
entry indicates that the corresponding timestep
should be utilized, while a FALSE
entry indicates that the
corresponding timestep should be ignored. Defaults to NULL
.
training
: Python boolean indicating whether the layer should behave in
training mode or in inference mode. This argument is passed to the
cell when calling it. This is only relevant if dropout
or
recurrent_dropout
is used (optional). Defaults to NULL
.
initial_state
: List of initial state tensors to be passed to the first
call of the cell (optional, NULL
causes creation
of zero-filled initial state tensors). Defaults to NULL
.
Other gru rnn layers:
rnn_cell_gru()
Other rnn layers:
layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_lstm()
layer_rnn()
layer_simple_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()