This layer will apply random rotations to each image, filling empty space
according to fill_mode
.
By default, random rotations are only applied during training.
At inference time, the layer does nothing. If you need to apply random
rotations at inference time, pass training = TRUE
when calling the layer.
Input pixel values can be of any range (e.g. [0., 1.)
or [0, 255]
) and
of integer or floating point dtype.
By default, the layer will output floats.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
layer_random_rotation(
object,
factor,
fill_mode = "reflect",
interpolation = "bilinear",
seed = NULL,
fill_value = 0,
data_format = NULL,
...
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
a float represented as fraction of 2 Pi, or a tuple of size 2
representing lower and upper bound for rotating clockwise and
counter-clockwise. A positive values means rotating
counter clock-wise,
while a negative value means clock-wise.
When represented as a single
float, this value is used for both the upper and lower bound.
For instance, factor=c(-0.2, 0.3)
results in an output rotation by a random
amount in the range [-20% * 360, 30% * 360]
.
factor=0.2
results in an
output rotating by a random amount
in the range [-20% * 360, 20% * 360]
.
Points outside the boundaries of the input are filled
according to the given mode
(one of {"constant", "reflect", "wrap", "nearest"}
).
reflect: (d c b a | a b c d | d c b a)
The input is extended by reflecting about
the edge of the last pixel.
constant: (k k k k | a b c d | k k k k)
The input is extended by
filling all values beyond the edge with
the same constant value k = 0.
wrap: (a b c d | a b c d | a b c d)
The input is extended by
wrapping around to the opposite edge.
nearest: (a a a a | a b c d | d d d d)
The input is extended by the nearest pixel.
Interpolation mode. Supported values: "nearest"
,
"bilinear"
.
Integer. Used to create a random seed.
a float represents the value to be filled outside
the boundaries when fill_mode="constant"
.
string, either "channels_last"
or "channels_first"
.
The ordering of the dimensions in the inputs. "channels_last"
corresponds to inputs with shape (batch, height, width, channels)
while "channels_first"
corresponds to inputs with shape
(batch, channels, height, width)
. It defaults to the
image_data_format
value found in your Keras config file at
~/.keras/keras.json
. If you never set it, then it will be
"channels_last"
.
For forward/backward compatability.
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format
Other image augmentation layers:
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_translation()
layer_random_zoom()
Other preprocessing layers:
layer_auto_contrast()
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_equalization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_max_num_bounding_boxes()
layer_mel_spectrogram()
layer_mix_up()
layer_normalization()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_solarization()
layer_stft_spectrogram()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()