This layer will randomly zoom in or out on each axis of an image
independently, filling empty space according to fill_mode
.
Input pixel values can be of any range (e.g. [0., 1.)
or [0, 255]
) and
of integer or floating point dtype.
By default, the layer will output floats.
layer_random_zoom(
object,
height_factor,
width_factor = NULL,
fill_mode = "reflect",
interpolation = "bilinear",
seed = NULL,
fill_value = 0,
data_format = NULL,
...
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
a float represented as fraction of value, or a list of
size 2 representing lower and upper bound for zooming vertically.
When represented as a single float, this value is used for both the
upper and lower bound. A positive value means zooming out, while a
negative value means zooming in. For instance,
height_factor=c(0.2, 0.3)
result in an output zoomed out by a
random amount in the range [+20%, +30%]
.
height_factor=c(-0.3, -0.2)
result in an output zoomed in by a
random amount in the range [+20%, +30%]
.
a float represented as fraction of value, or a list of
size 2 representing lower and upper bound for zooming horizontally.
When represented as a single float, this value is used for both the
upper and lower bound. For instance, width_factor=c(0.2, 0.3)
result in an output zooming out between 20% to 30%.
width_factor=c(-0.3, -0.2)
result in an output zooming in between
20% to 30%. NULL
means i.e., zooming vertical and horizontal
directions by preserving the aspect ratio. Defaults to NULL
.
Points outside the boundaries of the input are filled
according to the given mode. Available methods are "constant"
,
"nearest"
, "wrap"
and "reflect"
. Defaults to "constant"
.
"reflect"
: (d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last
pixel.
"constant"
: (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond
the edge with the same constant value k specified by
fill_value
.
"wrap"
: (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.
"nearest"
: (a a a a | a b c d | d d d d)
The input is extended by the nearest pixel.
Note that when using torch backend, "reflect"
is redirected to
"mirror"
(c d c b | a b c d | c b a b)
because torch does not
support "reflect"
.
Note that torch backend does not support "wrap"
.
Interpolation mode. Supported values: "nearest"
,
"bilinear"
.
Integer. Used to create a random seed.
a float that represents the value to be filled outside
the boundaries when fill_mode="constant"
.
string, either "channels_last"
or "channels_first"
.
The ordering of the dimensions in the inputs. "channels_last"
corresponds to inputs with shape (batch, height, width, channels)
while "channels_first"
corresponds to inputs with shape
(batch, channels, height, width)
. It defaults to the
image_data_format
value found in your Keras config file at
~/.keras/keras.json
. If you never set it, then it will be
"channels_last"
.
Base layer keyword arguments, such as name
and dtype
.
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format,
or (..., channels, height, width)
, in "channels_first"
format.
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels)
,
or (..., channels, target_height, target_width)
,
in "channels_first"
format.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
input_img <- random_uniform(c(32, 224, 224, 3))
layer <- layer_random_zoom(height_factor = .5, width_factor = .2)
out_img <- layer(input_img)
Other image augmentation layers:
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
Other preprocessing layers:
layer_auto_contrast()
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_equalization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_max_num_bounding_boxes()
layer_mel_spectrogram()
layer_mix_up()
layer_normalization()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_rescaling()
layer_resizing()
layer_solarization()
layer_stft_spectrogram()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()