This layer will randomly zoom in or out on each axis of an image
independently, filling empty space according to fill_mode.
Input pixel values can be of any range (e.g. [0., 1.) or [0, 255]) and
of integer or floating point dtype.
By default, the layer will output floats.
layer_random_zoom(
object,
height_factor,
width_factor = NULL,
fill_mode = "reflect",
interpolation = "bilinear",
seed = NULL,
fill_value = 0,
data_format = NULL,
...
)The return value depends on the value provided for the first argument.
If object is:
a keras_model_sequential(), then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input(), then the output tensor from calling layer(input) is returned.
NULL or missing, then a Layer instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
a float represented as fraction of value, or a list of
size 2 representing lower and upper bound for zooming vertically.
When represented as a single float, this value is used for both the
upper and lower bound. A positive value means zooming out, while a
negative value means zooming in. For instance,
height_factor=c(0.2, 0.3) result in an output zoomed out by a
random amount in the range [+20%, +30%].
height_factor=c(-0.3, -0.2) result in an output zoomed in by a
random amount in the range [+20%, +30%].
a float represented as fraction of value, or a list of
size 2 representing lower and upper bound for zooming horizontally.
When represented as a single float, this value is used for both the
upper and lower bound. For instance, width_factor=c(0.2, 0.3)
result in an output zooming out between 20% to 30%.
width_factor=c(-0.3, -0.2) result in an output zooming in between
20% to 30%. NULL means i.e., zooming vertical and horizontal
directions by preserving the aspect ratio. Defaults to NULL.
Points outside the boundaries of the input are filled
according to the given mode. Available methods are "constant",
"nearest", "wrap" and "reflect". Defaults to "constant".
"reflect": (d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last
pixel.
"constant": (k k k k | a b c d | k k k k)
The input is extended by filling all values beyond
the edge with the same constant value k specified by
fill_value.
"wrap": (a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge.
"nearest": (a a a a | a b c d | d d d d)
The input is extended by the nearest pixel.
Note that when using torch backend, "reflect" is redirected to
"mirror" (c d c b | a b c d | c b a b) because torch does not
support "reflect".
Note that torch backend does not support "wrap".
Interpolation mode. Supported values: "nearest",
"bilinear".
Integer. Used to create a random seed.
a float that represents the value to be filled outside
the boundaries when fill_mode="constant".
string, either "channels_last" or "channels_first".
The ordering of the dimensions in the inputs. "channels_last"
corresponds to inputs with shape (batch, height, width, channels)
while "channels_first" corresponds to inputs with shape
(batch, channels, height, width). It defaults to the
image_data_format value found in your Keras config file at
~/.keras/keras.json. If you never set it, then it will be
"channels_last".
Base layer keyword arguments, such as name and dtype.
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels), in "channels_last" format,
or (..., channels, height, width), in "channels_first" format.
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels),
or (..., channels, target_height, target_width),
in "channels_first" format.
Note: This layer is safe to use inside a tf.data pipeline
(independently of which backend you're using).
input_img <- random_uniform(c(32, 224, 224, 3))
layer <- layer_random_zoom(height_factor = .5, width_factor = .2)
out_img <- layer(input_img)
Other image augmentation layers:
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
Other preprocessing layers:
layer_auto_contrast()
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_equalization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_max_num_bounding_boxes()
layer_mel_spectrogram()
layer_mix_up()
layer_normalization()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_rescaling()
layer_resizing()
layer_solarization()
layer_stft_spectrogram()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()