Fully-connected RNN where the output is to be fed back as the new input.
layer_simple_rnn(
object,
units,
activation = "tanh",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
seed = NULL,
...
)
The return value depends on the value provided for the first argument.
If object
is:
a keras_model_sequential()
, then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input()
, then the output tensor from calling layer(input)
is returned.
NULL
or missing, then a Layer
instance is returned.
Object to compose the layer with. A tensor, array, or sequential model.
Positive integer, dimensionality of the output space.
Activation function to use.
Default: hyperbolic tangent (tanh
).
If you pass NULL, no activation is applied
(ie. "linear" activation: a(x) = x
).
Boolean, (default TRUE
), whether the layer uses
a bias vector.
Initializer for the kernel
weights matrix,
used for the linear transformation of the inputs. Default:
"glorot_uniform"
.
Initializer for the recurrent_kernel
weights matrix, used for the linear transformation of the recurrent
state. Default: "orthogonal"
.
Initializer for the bias vector. Default: "zeros"
.
Regularizer function applied to the kernel
weights
matrix. Default: NULL
.
Regularizer function applied to the
recurrent_kernel
weights matrix. Default: NULL
.
Regularizer function applied to the bias vector.
Default: NULL
.
Regularizer function applied to the output of the
layer (its "activation"). Default: NULL
.
Constraint function applied to the kernel
weights
matrix. Default: NULL
.
Constraint function applied to the
recurrent_kernel
weights matrix. Default: NULL
.
Constraint function applied to the bias vector.
Default: NULL
.
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
Boolean. Whether to return the last output
in the output sequence, or the full sequence. Default: FALSE
.
Boolean. Whether to return the last state
in addition to the output. Default: FALSE
.
Boolean (default: FALSE
).
If TRUE
, process the input sequence backwards and return the
reversed sequence.
Boolean (default: FALSE
). If TRUE
, the last state
for each sample at index i in a batch will be used as the
initial state for the sample of index i in the following batch.
Boolean (default: FALSE
).
If TRUE
, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up an RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.
Initial seed for the random number generator
For forward/backward compatability.
sequence
: A 3D tensor, with shape [batch, timesteps, feature]
.
mask
: Binary tensor of shape [batch, timesteps]
indicating whether
a given timestep should be masked. An individual TRUE
entry
indicates that the corresponding timestep should be utilized,
while a FALSE
entry indicates that the corresponding timestep
should be ignored.
training
: Python boolean indicating whether the layer should behave in
training mode or in inference mode.
This argument is passed to the cell when calling it.
This is only relevant if dropout
or recurrent_dropout
is used.
initial_state
: List of initial state tensors to be passed to the first
call of the cell.
inputs <- random_uniform(c(32, 10, 8))
simple_rnn <- layer_simple_rnn(units = 4)
output <- simple_rnn(inputs) # The output has shape `(32, 4)`.
simple_rnn <- layer_simple_rnn(
units = 4, return_sequences=TRUE, return_state=TRUE
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
c(whole_sequence_output, final_state) %<-% simple_rnn(inputs)
Other simple rnn layers:
rnn_cell_simple()
Other rnn layers:
layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_grayscale()
layer_random_hue()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()