According to Lin et al., 2018, it helps to apply a focal factor to down-weight easy examples and focus more on hard examples. By default, the focal tensor is computed as follows:
focal_factor = (1 - output)^gamma
for class 1
focal_factor = output^gamma
for class 0
where gamma
is a focusing parameter. When gamma
= 0, there is no focal
effect on the binary crossentropy loss.
If apply_class_balancing == TRUE
, this function also takes into account a
weight balancing factor for the binary classes 0 and 1 as follows:
weight = alpha
for class 1 (target == 1
)
weight = 1 - alpha
for class 0
where alpha
is a float in the range of [0, 1]
.
Binary cross-entropy loss is often used for binary (0 or 1) classification tasks. The loss function requires the following inputs:
y_true
(true label): This is either 0 or 1.
y_pred
(predicted value): This is the model's prediction, i.e, a single
floating-point value which either represents a
logit, (i.e, value in [-inf, inf]
when from_logits=TRUE
) or a probability (i.e, value in [0., 1.]
when
from_logits=FALSE
).
According to Lin et al., 2018, it helps to apply a "focal factor" to down-weight easy examples and focus more on hard examples. By default, the focal tensor is computed as follows:
focal_factor = (1 - output) ** gamma
for class 1
focal_factor = output ** gamma
for class 0
where gamma
is a focusing parameter. When gamma=0
, this function is
equivalent to the binary crossentropy loss.
loss_binary_focal_crossentropy(
y_true,
y_pred,
apply_class_balancing = FALSE,
alpha = 0.25,
gamma = 2,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
reduction = "sum_over_batch_size",
name = "binary_focal_crossentropy",
dtype = NULL
)
Binary focal crossentropy loss value
with shape = [batch_size, d0, .. dN-1]
.
Ground truth values, of shape (batch_size, d0, .. dN)
.
The predicted values, of shape (batch_size, d0, .. dN)
.
A bool, whether to apply weight balancing on the binary classes 0 and 1.
A weight balancing factor for class 1, default is 0.25
as
mentioned in reference Lin et al., 2018. The weight for class 0 is
1.0 - alpha
.
A focusing parameter used to compute the focal factor, default is
2.0
as mentioned in the reference
Lin et al., 2018.
Whether to interpret y_pred
as a tensor of
logit values. By default, we
assume that y_pred
are probabilities (i.e., values in [0, 1]
).
Float in [0, 1]
. When 0
, no smoothing occurs.
When > 0
, we compute the loss between the predicted labels
and a smoothed version of the true labels, where the smoothing
squeezes the labels towards 0.5
.
Larger values of label_smoothing
correspond to heavier smoothing.
The axis along which to compute crossentropy (the features axis).
Defaults to -1
.
For forward/backward compatability.
Type of reduction to apply to the loss. In almost all cases
this should be "sum_over_batch_size"
. Supported options are
"sum"
, "sum_over_batch_size"
, "mean"
,
"mean_with_sample_weight"
or NULL
. "sum"
sums the loss,
"sum_over_batch_size"
and "mean"
sum the loss and divide by the
sample size, and "mean_with_sample_weight"
sums the loss and
divides by the sum of the sample weights. "none"
and NULL
perform no aggregation. Defaults to "sum_over_batch_size"
.
Optional name for the loss instance.
The dtype of the loss's computations. Defaults to NULL
, which
means using config_floatx()
. config_floatx()
is a
"float32"
unless set to different value
(via config_set_floatx()
). If a keras$DTypePolicy
is
provided, then the compute_dtype
will be utilized.
y_true <- rbind(c(0, 1), c(0, 0))
y_pred <- rbind(c(0.6, 0.4), c(0.4, 0.6))
loss <- loss_binary_focal_crossentropy(y_true, y_pred, gamma = 2)
loss
## tf.Tensor([0.32986466 0.20579838], shape=(2), dtype=float64)
With the compile()
API:
model %>% compile(
loss = loss_binary_focal_crossentropy(
gamma = 2.0, from_logits = TRUE),
...
)
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)
y_true <- op_array(c(0, 1, 0, 0))
y_pred <- op_array(c(-18.6, 0.51, 2.94, -12.8))
loss <- loss_binary_focal_crossentropy(gamma = 2, from_logits = TRUE)
loss(y_true, y_pred)
## tf.Tensor(0.6912122, shape=(), dtype=float32)
# Apply class weight
loss <- loss_binary_focal_crossentropy(
apply_class_balancing = TRUE, gamma = 2, from_logits = TRUE)
loss(y_true, y_pred)
## tf.Tensor(0.5101333, shape=(), dtype=float32)
# Example 2: (batch_size = 2, number of samples = 4)
y_true <- rbind(c(0, 1), c(0, 0))
y_pred <- rbind(c(-18.6, 0.51), c(2.94, -12.8))
# Using default 'auto'/'sum_over_batch_size' reduction type.
loss <- loss_binary_focal_crossentropy(
gamma = 3, from_logits = TRUE)
loss(y_true, y_pred)
## tf.Tensor(0.6469951, shape=(), dtype=float32)
# Apply class weight
loss <- loss_binary_focal_crossentropy(
apply_class_balancing = TRUE, gamma = 3, from_logits = TRUE)
loss(y_true, y_pred)
## tf.Tensor(0.48214132, shape=(), dtype=float32)
# Using 'sample_weight' attribute with focal effect
loss <- loss_binary_focal_crossentropy(
gamma = 3, from_logits = TRUE)
loss(y_true, y_pred, sample_weight = c(0.8, 0.2))
## tf.Tensor(0.13312504, shape=(), dtype=float32)
# Apply class weight
loss <- loss_binary_focal_crossentropy(
apply_class_balancing = TRUE, gamma = 3, from_logits = TRUE)
loss(y_true, y_pred, sample_weight = c(0.8, 0.2))
## tf.Tensor(0.09735977, shape=(), dtype=float32)
# Using 'sum' reduction` type.
loss <- loss_binary_focal_crossentropy(
gamma = 4, from_logits = TRUE,
reduction = "sum")
loss(y_true, y_pred)
## tf.Tensor(1.2218808, shape=(), dtype=float32)
# Apply class weight
loss <- loss_binary_focal_crossentropy(
apply_class_balancing = TRUE, gamma = 4, from_logits = TRUE,
reduction = "sum")
loss(y_true, y_pred)
## tf.Tensor(0.9140807, shape=(), dtype=float32)
# Using 'none' reduction type.
loss <- loss_binary_focal_crossentropy(
gamma = 5, from_logits = TRUE,
reduction = NULL)
loss(y_true, y_pred)
## tf.Tensor([0.00174837 1.1561027 ], shape=(2), dtype=float32)
# Apply class weight
loss <- loss_binary_focal_crossentropy(
apply_class_balancing = TRUE, gamma = 5, from_logits = TRUE,
reduction = NULL)
loss(y_true, y_pred)
## tf.Tensor([4.3709317e-04 8.6707699e-01], shape=(2), dtype=float32)
Other losses:
Loss()
loss_binary_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_circle()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()