y_true
and y_pred
.Formula:
loss = 1 - (2 * sum(y_true * y_pred)) / (sum(y_true) + sum(y_pred))
Formula:
loss = 1 - (2 * sum(y_true * y_pred)) / (sum(y_true) + sum(y_pred))
loss_dice(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "dice",
axis = NULL,
dtype = NULL
)
if y_true
and y_pred
are provided, Dice loss value. Otherwise,
a Loss()
instance.
Tensor of true targets.
Tensor of predicted targets.
For forward/backward compatability.
Type of reduction to apply to the loss. In almost all cases
this should be "sum_over_batch_size"
. Supported options are
"sum"
, "sum_over_batch_size"
, "mean"
,
"mean_with_sample_weight"
or NULL
. "sum"
sums the loss,
"sum_over_batch_size"
and "mean"
sum the loss and divide by the
sample size, and "mean_with_sample_weight"
sums the loss and
divides by the sum of the sample weights. "none"
and NULL
perform no aggregation. Defaults to "sum_over_batch_size"
.
String, name for the object
List of which dimensions the loss is calculated. Defaults to
NULL
.
The dtype of the loss's computations. Defaults to NULL
, which
means using config_floatx()
. config_floatx()
is a
"float32"
unless set to different value
(via config_set_floatx()
). If a keras$DTypePolicy
is
provided, then the compute_dtype
will be utilized.
y_true <- array(c(1, 1, 0, 0,
1, 1, 0, 0), dim = c(2, 2, 2, 1))
y_pred <- array(c(0, 0.4, 0, 0,
1, 0, 1, 0.9), dim = c(2, 2, 2, 1))axis <- c(2, 3, 4)
loss <- loss_dice(y_true, y_pred, axis = axis)
stopifnot(shape(loss) == shape(2))
loss
## tf.Tensor([0.50000001 0.75757576], shape=(2), dtype=float64)
loss = loss_dice(y_true, y_pred)
stopifnot(shape(loss) == shape())
loss
## tf.Tensor(0.6164383614186526, shape=(), dtype=float64)
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_circle()
loss_cosine_similarity()
loss_ctc()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()