y_true
and y_pred
.Note that y_pred
and y_true
cannot be less or equal to 0
. Negative
values and 0
values will be replaced with config_epsilon()
(default to 1e-7
).
Formula:
loss <- mean(square(log(y_true + 1) - log(y_pred + 1)))
loss_mean_squared_logarithmic_error(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "mean_squared_logarithmic_error",
dtype = NULL
)
Mean squared logarithmic error values with shape = [batch_size, d0, .. dN-1]
.
Ground truth values with shape = [batch_size, d0, .. dN]
.
The predicted values with shape = [batch_size, d0, .. dN]
.
For forward/backward compatability.
Type of reduction to apply to the loss. In almost all cases
this should be "sum_over_batch_size"
. Supported options are
"sum"
, "sum_over_batch_size"
, "mean"
,
"mean_with_sample_weight"
or NULL
. "sum"
sums the loss,
"sum_over_batch_size"
and "mean"
sum the loss and divide by the
sample size, and "mean_with_sample_weight"
sums the loss and
divides by the sum of the sample weights. "none"
and NULL
perform no aggregation. Defaults to "sum_over_batch_size"
.
Optional name for the loss instance.
The dtype of the loss's computations. Defaults to NULL
, which
means using config_floatx()
. config_floatx()
is a
"float32"
unless set to different value
(via config_set_floatx()
). If a keras$DTypePolicy
is
provided, then the compute_dtype
will be utilized.
y_true <- random_uniform(c(2, 3), 0, 2)
y_pred <- random_uniform(c(2, 3))
loss <- loss_mean_squared_logarithmic_error(y_true, y_pred)
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_circle()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()